Suppr超能文献

利用C-ITS基础设施和机器学习实现协作式自动驾驶车辆的高效多传感器融合

Efficient Multi-Sensor Fusion for Cooperative Autonomous Vehicles Leveraging C-ITS Infrastructure and Machine Learning.

作者信息

Kwak Jiwon, Jeon Hayoung, Song Seokil

机构信息

School of Cbersecurity, Korea University, Seoul 02841, Republic of Korea.

Department of Computer Engineering, Korea National University of Transportation, Daehakro 50, Chungju 27469, Republic of Korea.

出版信息

Sensors (Basel). 2025 Mar 21;25(7):1975. doi: 10.3390/s25071975.

Abstract

The widespread deployment of Cooperative Intelligent Transport Systems (C-ITS) has elevated the need for robust, real-time sensor fusion strategies capable of handling noisy, asynchronous data from multiple infrastructure sensors. In this paper, we propose a two-stage data fusion framework that integrates a grid-based indexing method for efficient duplicate-object detection with a Light Gradient Boosting Machine (LGBM) augmented by an Extended Kalman Filter (EKF). In the first stage, the hybrid EKF-LGBM model mitigates noise, refines object trajectories, and synchronizes sensor streams under varying noise conditions. In the second stage, the grid-based indexing technique rapidly associates objects detected by multiple sensors, merging their measurements into unified state estimates. Extensive experiments-using both synthetic data, where noise scales ranged from 0.5 to 3, and a real-road dataset-confirm that our approach balances near-real-time performance with significantly improved trajectory accuracy. For instance, at a noise scale of 1, the hybrid method outperforms the Unscented Kalman Filter (UKF) while running up to 1.81 times faster, and real-world tests show a 1.54 times RMSE improvement over baseline measurements. By efficiently filtering out noise and minimizing the computational overhead of pairwise comparisons, the proposed system demonstrates practical feasibility with respect to C-ITS applications.

摘要

协同智能交通系统(C-ITS)的广泛部署,使得对强大的实时传感器融合策略的需求不断增加,这些策略需要能够处理来自多个基础设施传感器的噪声异步数据。在本文中,我们提出了一种两阶段数据融合框架,该框架将基于网格的索引方法与扩展卡尔曼滤波器(EKF)增强的轻量级梯度提升机(LGBM)相结合,用于高效的重复目标检测。在第一阶段,混合EKF-LGBM模型减轻噪声,优化目标轨迹,并在不同噪声条件下同步传感器数据流。在第二阶段,基于网格的索引技术快速关联多个传感器检测到的目标,将它们的测量结果合并为统一的状态估计。使用合成数据(噪声尺度范围为0.5至3)和真实道路数据集进行的大量实验证实,我们的方法在接近实时性能的同时,显著提高了轨迹精度。例如,在噪声尺度为1时,混合方法的性能优于无迹卡尔曼滤波器(UKF),同时运行速度快1.81倍,实际测试表明,与基线测量相比,均方根误差(RMSE)提高了1.54倍。通过有效地滤除噪声并最小化成对比较的计算开销,所提出的系统在C-ITS应用方面展示了实际可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb04/11990935/80322ca0ddca/sensors-25-01975-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验