Suppr超能文献

肌肉减少症中表面肌电图的系统评价:涉及的肌肉、信号处理技术、显著特征及人工智能方法

A Systematic Review of Surface Electromyography in Sarcopenia: Muscles Involved, Signal Processing Techniques, Significant Features, and Artificial Intelligence Approaches.

作者信息

Leone Alessandro, Carluccio Anna Maria, Caroppo Andrea, Manni Andrea, Rescio Gabriele

机构信息

National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy.

出版信息

Sensors (Basel). 2025 Mar 27;25(7):2122. doi: 10.3390/s25072122.

Abstract

Sarcopenia, affecting between 1-29% of the older population, is characterized by an age-related loss of skeletal muscle mass and function. Reduced muscle strength, either in terms of quantity or quality, and poor physical performance are among the criteria used to diagnose it. The current gold standard methods to evaluate sarcopenia are limited in terms of their cost, required expertise, and portability. A possible alternative for sarcopenia detection and monitoring is surface electromyography, which offers comprehensive information on muscle function, but a systematic synthesis of the existing literature is lacking. This systematic review aims to evaluate the application of sEMG in diagnosing and monitoring sarcopenia, focusing on the muscles involved, signal processing techniques, artificial intelligence models, and statistical analysis methods used for data interpretation. Following PRISMA guidelines, a search was performed in PubMed, Scopus, and IEEE databases from 2014 up to December 2024. Original studies using sEMG for sarcopenia diagnosis or assessment in older populations were included. After removing duplicates, 145 articles were identified, of which 18 were included in the final analysis. The findings indicate a growing interest in the adoption of sEMG in sarcopenia assessment. However, methodological heterogeneity among studies limits comparability. sEMG represents a promising option for the early detection of sarcopenia, but standardized guidelines for data collection and interpretation are needed. Future studies should focus on clinical validation and results reproducibility.

摘要

肌肉减少症影响着1%至29%的老年人群,其特征是与年龄相关的骨骼肌质量和功能丧失。肌肉力量在数量或质量方面的下降以及身体表现不佳是用于诊断该病的标准之一。目前评估肌肉减少症的金标准方法在成本、所需专业知识和便携性方面存在局限性。表面肌电图是一种用于检测和监测肌肉减少症的可能替代方法,它能提供有关肌肉功能的全面信息,但目前缺乏对现有文献的系统综述。本系统综述旨在评估表面肌电图在诊断和监测肌肉减少症中的应用,重点关注所涉及的肌肉、信号处理技术、人工智能模型以及用于数据解读的统计分析方法。按照PRISMA指南,我们在2014年至2024年12月期间对PubMed、Scopus和IEEE数据库进行了检索。纳入了在老年人群中使用表面肌电图进行肌肉减少症诊断或评估的原始研究。去除重复项后,共识别出145篇文章,其中18篇纳入最终分析。研究结果表明,表面肌电图在肌肉减少症评估中的应用越来越受到关注。然而,研究之间的方法学异质性限制了可比性。表面肌电图是早期检测肌肉减少症的一个有前景的选择,但需要数据收集和解读的标准化指南。未来的研究应侧重于临床验证和结果的可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/11991410/02bb34ee1545/sensors-25-02122-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验