Suppr超能文献

通过整合时间序列哨兵-2数据、环境协变量和多个集成模型绘制土壤有机碳图

Mapping Soil Organic Carbon by Integrating Time-Series Sentinel-2 Data, Environmental Covariates and Multiple Ensemble Models.

作者信息

Cui Zhibo, Chen Songchao, Hu Bifeng, Wang Nan, Feng Chunhui, Peng Jie

机构信息

College of Agriculture, Tarim University, Alar 843300, China.

Research Center of Oasis Agricultural Resources and Environment in Southern Xinjiang, Tarim University, Alar 843300, China.

出版信息

Sensors (Basel). 2025 Mar 30;25(7):2184. doi: 10.3390/s25072184.

Abstract

Despite extensive use of Sentinel-2 (S-2) data for mapping soil organic carbon (SOC), how to fully mine the potential of time-series S-2 data still remains unclear. To fill this gap, this study introduced an innovative approach for mining time-series data. Using 200 top soil organic carbon samples as an example, we revealed temporal variation patterns in the correlation between SOC and time-series S-2 data and subsequently identified the optimal monitoring time window for SOC. The integration of environmental covariates with multiple ensemble models enabled precise mapping of SOC in the arid region of southern Xinjiang, China (6109 km). Our results indicated the following: (a) the correlation between SOC and time-series S-2 data exhibited both interannual and monthly variations, while July to August is the optimal monitoring time window for SOC; (b) adding soil properties and S-2 texture information could greatly improve the accuracy of SOC prediction models. Soil properties and S-2 texture information contribute 8.85% and 61.78% to the best model, respectively; (c) among different ensemble models, the stacking ensemble model outperformed both the weight averaging and sample averaging ensemble models in terms of prediction performance. Therefore, our study proved that mining spectral and texture information from the optimal monitoring time window, integrated with environmental covariates and ensemble models, has a high potential for accurate SOC mapping.

摘要

尽管哨兵 - 2(S - 2)数据在土壤有机碳(SOC)制图中得到了广泛应用,但如何充分挖掘时间序列S - 2数据的潜力仍不明确。为填补这一空白,本研究引入了一种挖掘时间序列数据的创新方法。以200个表层土壤有机碳样本为例,我们揭示了SOC与时间序列S - 2数据之间相关性的时间变化模式,并随后确定了SOC的最佳监测时间窗口。将环境协变量与多个集成模型相结合,实现了对中国新疆南部干旱地区(6109平方公里)SOC的精确制图。我们的结果表明:(a)SOC与时间序列S - 2数据之间的相关性呈现出年际和月度变化,而7月至8月是SOC的最佳监测时间窗口;(b)添加土壤属性和S - 2纹理信息可显著提高SOC预测模型的准确性。土壤属性和S - 2纹理信息分别对最佳模型贡献了8.85%和61.78%;(c)在不同的集成模型中,堆叠集成模型在预测性能方面优于加权平均和样本平均集成模型。因此,我们的研究证明,从最佳监测时间窗口挖掘光谱和纹理信息,结合环境协变量和集成模型,在精确的SOC制图方面具有很大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e6/11991386/6529fb9d6d0c/sensors-25-02184-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验