Suppr超能文献

迈向可持续的聚羟基脂肪酸酯:一种新一代生物技术方法。

Toward Sustainable Polyhydroxyalkanoates: A Next-Gen Biotechnology Approach.

作者信息

Kalia Vipin Chandra, Singh Rahul Vikram, Gong Chunjie, Lee Jung-Kul

机构信息

Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China.

出版信息

Polymers (Basel). 2025 Mar 22;17(7):853. doi: 10.3390/polym17070853.

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers synthesized by microorganisms and serve as sustainable alternatives to petroleum-based plastics. While traditional PHA production relies on refined carbon sources and pure cultures, high costs and scalability challenges limit commercial viability. Extremophiles, particularly halophiles, have emerged as promising candidates for cost-effective, large-scale production of PHAs. Their ability to thrive in extreme environments reduces contamination risks, minimizes the need for sterilization, and lowers operational costs. Advancements in metabolic engineering, synthetic biology, and CRISPR-based genome editing have enhanced PHA yields by optimizing metabolic flux and cell morphology. Additionally, utilizing alternative feedstocks such as biowaste, syngas, methane, and CO₂ improves economic feasibility. Next-generation industrial biotechnology integrates extremophilic microbes with AI-driven fermentation and eco-friendly downstream processing to enhance scalability. Industrial-scale production of PHAs using spp. and other extremophiles demonstrates significant progress toward commercialization, paving the way for sustainable biopolymer applications in reducing plastic pollution.

摘要

聚羟基脂肪酸酯(PHA)是微生物合成的可生物降解生物聚合物,可作为石油基塑料的可持续替代品。虽然传统的PHA生产依赖于精制碳源和纯培养物,但高成本和可扩展性挑战限制了其商业可行性。极端微生物,特别是嗜盐菌,已成为具有成本效益的大规模生产PHA的有前途的候选者。它们在极端环境中茁壮成长的能力降低了污染风险,最大限度地减少了灭菌需求,并降低了运营成本。代谢工程、合成生物学和基于CRISPR的基因组编辑方面的进展通过优化代谢通量和细胞形态提高了PHA产量。此外,利用生物废料、合成气、甲烷和二氧化碳等替代原料提高了经济可行性。下一代工业生物技术将极端微生物与人工智能驱动的发酵和环保下游加工相结合,以提高可扩展性。使用 属物种和其他极端微生物进行PHA的工业规模生产在商业化方面取得了重大进展,为可持续生物聚合物在减少塑料污染方面的应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fae/11991626/a2867176a8e2/polymers-17-00853-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验