Suppr超能文献

磁共振成像中人工智能用于预测直肠癌患者淋巴结转移的Meta分析

Artificial intelligence in magnetic resonance imaging for predicting lymph node metastasis in rectal cancer patients: a meta-analysis.

作者信息

Bai Zhiqiang, Xu Lumin, Ding Zujun, Cao Yi, Wang Zepeng, Yang Wenjie, Xu Wei, Li Hang

机构信息

Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.

Department of Anorectal surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.

出版信息

Eur Radiol. 2025 Apr 12. doi: 10.1007/s00330-025-11519-y.

Abstract

OBJECTIVE

This meta-analysis aims to evaluate the diagnostic performance of magnetic resonance imaging (MRI)-based artificial intelligence (AI) in the preoperative detection of lymph node metastasis (LNM) in patients with rectal cancer and to compare it with the diagnostic performance of radiologists.

METHODS

A thorough literature search was conducted across PubMed, Embase, and Web of Science to identify relevant studies published up to September 2024. The selected studies focused on the diagnostic performance of MRI-based AI in detecting rectal cancer LNM. A bivariate random-effects model was employed to calculate pooled sensitivity and specificity, each reported with 95% confidence intervals (CIs). Study heterogeneity was assessed using the I statistic. Furthermore, the modified quality assessment of diagnostic accuracy studies-2 (QUADAS-2) tool was applied to assess the methodological quality of the selected studies.

RESULTS

Seventeen studies were included in this meta-analysis. The pooled sensitivity, specificity, and area under the curve (AUC) for MRI-based AI in detecting preoperative LNM in rectal cancer were 0.71 (95% CI: 0.66-0.74), 0.71 (95% CI: 0.67-0.75), and 0.77 (95% CI: 0.73-0.80), respectively. For radiologists, these values were 0.64 (95% CI: 0.49-0.77), 0.72 (95% CI: 0.62-0.80), and 0.74 (95% CI: 0.68-0.80). Both analyses showed no significant publication bias (p > 0.05).

CONCLUSIONS

MRI-based AI demonstrates diagnostic performance similar to that of radiologists. The high heterogeneity among studies limits the strength of these findings, and further research with external validation datasets is necessary to confirm the results and assess their practical clinical value.

KEY POINTS

Question How effective is MRI-based AI in detecting LNM in rectal cancer patients compared to traditional radiology methods? Findings The diagnostic performance of MRI-based AI is comparable to radiologists, with pooled sensitivity and specificity both at 0.71, indicating moderate accuracy. Clinical relevance Integrating MRI-based AI can enhance diagnostic efficiency in identifying LNM, especially in settings with limited access to skilled radiologists, but requires further validation.

摘要

目的

本荟萃分析旨在评估基于磁共振成像(MRI)的人工智能(AI)在直肠癌患者术前检测淋巴结转移(LNM)中的诊断性能,并将其与放射科医生的诊断性能进行比较。

方法

通过全面检索PubMed、Embase和Web of Science,以识别截至2024年9月发表的相关研究。所选研究聚焦于基于MRI的AI在检测直肠癌LNM中的诊断性能。采用双变量随机效应模型计算合并敏感性和特异性,每项均报告95%置信区间(CIs)。使用I统计量评估研究异质性。此外,应用诊断准确性研究的改良质量评估-2(QUADAS-2)工具评估所选研究的方法学质量。

结果

本荟萃分析纳入了17项研究。基于MRI的AI在检测直肠癌术前LNM时的合并敏感性、特异性和曲线下面积(AUC)分别为0.71(95%CI:0.66 - 0.74)、0.71(95%CI:0.67 - 0.75)和0.77(95%CI:0.73 - 0.80)。对于放射科医生,这些值分别为0.64(95%CI:0.49 - 0.77)、0.72(95%CI:0.62 - 0.80)和0.74(95%CI:0.68 - 0.80)。两项分析均未显示出显著的发表偏倚(p > 0.05)。

结论

基于MRI的AI显示出与放射科医生相似的诊断性能。研究之间的高异质性限制了这些发现的力度,需要进一步使用外部验证数据集进行研究,以确认结果并评估其实际临床价值。

关键点

问题 与传统放射学方法相比,基于MRI的AI在检测直肠癌患者的LNM方面效果如何?发现 基于MRI的AI的诊断性能与放射科医生相当,合并敏感性和特异性均为0.71,表明准确性中等。临床意义 整合基于MRI的AI可以提高识别LNM的诊断效率,特别是在获得熟练放射科医生的机会有限的情况下,但需要进一步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验