Suppr超能文献

中间数据融合提高了近红外光谱和拉曼光谱检测花生中黄曲霉毒素B1的准确性。

Intermediate data fusion improves the accuracy of near-infrared spectroscopy and Raman spectroscopy for the detection of aflatoxin B1 in peanuts.

作者信息

Mei CongLi, Deng Jihong, Li Jian, Jiang Hui

机构信息

College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310048, PR China.

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2025 Oct 5;338:126216. doi: 10.1016/j.saa.2025.126216. Epub 2025 Apr 9.

Abstract

This study developed a convolutional neural network (CNN) model based on feature-level data fusion for quantitatively detecting aflatoxin B1 (AFB1) in peanuts. Using a portable near-infrared (NIR) spectrometer and a Raman spectrometer, NIR and Raman spectra were collected from peanut samples with varying levels of fungal contamination. The spectral data were then enhanced and preprocessed, and individual CNN models were constructed for each type of spectrum. Building on the single-spectrum models, data-level and feature-level fusion of the NIR and Raman spectra were performed, and corresponding CNN models were developed for the quantitative detection of AFB1 in peanuts. Experimental results demonstrated that the CNN models with data fusion significantly improved detection performance and generalization ability compared to single-spectrum CNN models, particularly those using feature-level fusion. The feature-level fusion CNN model yielded the best performance, with a root mean square error of prediction of 19.7787 μg·kg, a prediction correlation coefficient of 0.9836 for test set 1 (containing augmented spectra), and 0.9890 for test set 2 (containing only raw spectra), with a relative prediction deviation of 7.6506. Overall, this study demonstrated the superiority of data fusion and the feasibility of applying CNNs in spectral detection, providing a reference for quantitatively detecting mycotoxins.

摘要

本研究基于特征级数据融合开发了一种卷积神经网络(CNN)模型,用于定量检测花生中的黄曲霉毒素B1(AFB1)。使用便携式近红外(NIR)光谱仪和拉曼光谱仪,从真菌污染程度不同的花生样品中采集了近红外光谱和拉曼光谱。然后对光谱数据进行增强和预处理,并为每种光谱类型构建单独的CNN模型。在单光谱模型的基础上,对近红外光谱和拉曼光谱进行了数据级和特征级融合,并开发了相应的CNN模型用于花生中AFB1的定量检测。实验结果表明,与单光谱CNN模型相比,具有数据融合的CNN模型显著提高了检测性能和泛化能力,尤其是那些使用特征级融合的模型。特征级融合CNN模型性能最佳,预测均方根误差为19.7787μg·kg,测试集1(包含增强光谱)的预测相关系数为0.9836,测试集2(仅包含原始光谱)的预测相关系数为0.9890,相对预测偏差为7.6506。总体而言,本研究证明了数据融合的优越性以及将CNN应用于光谱检测的可行性,为真菌毒素的定量检测提供了参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验