Suppr超能文献

马尔可夫转移场与卷积神经网络相结合提高了玉米中黄曲霉毒素B测定近红外光谱模型的预测性能。

Markov Transition Field Combined with Convolutional Neural Network Improved the Predictive Performance of Near-Infrared Spectroscopy Models for Determination of Aflatoxin B in Maize.

作者信息

Wang Bo, Deng Jihong, Jiang Hui

机构信息

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

Foods. 2022 Jul 25;11(15):2210. doi: 10.3390/foods11152210.

Abstract

This work provides a novel approach to monitor the aflatoxin B (AFB) content in maize by near-infrared (NIR) spectra-based deep learning models that integrates Markov transition field (MTF) image coding and a convolutional neural network (CNN) strategy. According to the data structure characteristics of near-infrared spectra, new structures of one-dimensional CNN (1D-CNN) and two-dimensional MTF-CNN (2D-MTF-CNN) were designed to construct a deep learning model for the monitoring of AFB in maize. The results obtained showed that compared with the 1D-CNN model, the performance of the 2D-MTF-CNN model had been significantly improved, and its root mean square error of prediction, coefficient of predictive determination, and relative percent deviation were 1.3591 μg·kg, 0.9955, and 14.9386, respectively. The results indicate that the MTF is an effective data encoding technique for converting one-dimensional spectra into two-dimensional images. It more intuitively reflects the intrinsic characteristics of the NIR spectra from a new perspective and provides richer spectral information for the construction of deep learning models, which can ensure the detection accuracy and generalization performance of deep learning quantitative detection models. This study provides a new analytical perspective for the chemometrics analysis of the NIR spectroscopy.

摘要

这项工作提供了一种新方法,通过基于近红外(NIR)光谱的深度学习模型来监测玉米中的黄曲霉毒素B(AFB)含量,该模型集成了马尔可夫转移场(MTF)图像编码和卷积神经网络(CNN)策略。根据近红外光谱的数据结构特征,设计了一维卷积神经网络(1D-CNN)和二维MTF卷积神经网络(2D-MTF-CNN)的新结构,以构建用于监测玉米中AFB的深度学习模型。所得结果表明,与1D-CNN模型相比,2D-MTF-CNN模型的性能有显著提高,其预测均方根误差、预测决定系数和相对百分偏差分别为1.3591μg·kg、0.9955和14.9386。结果表明,MTF是一种将一维光谱转换为二维图像的有效数据编码技术。它从一个新的角度更直观地反映了近红外光谱的内在特征,并为深度学习模型的构建提供了更丰富的光谱信息,这可以确保深度学习定量检测模型的检测精度和泛化性能。本研究为近红外光谱的化学计量学分析提供了新的分析视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3031/9332458/44a3f2994e75/foods-11-02210-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验