Suppr超能文献

用于锂离子电池薄硅基涂层质量控制的热成像:缺陷检测、干燥动力学以及基于机器学习的质量负载估计

Thermal Imaging for Quality Control in Thin Silicon-Based Coatings for Lithium-Ion Batteries: Defect Detection, Drying Dynamics, and Machine Learning-Based Mass Loading Estimation.

作者信息

Amin Adil, Geiping Philipp Valentin, Odungat Ahammed Suhail, Özcan Fatih, Segets Doris

机构信息

Institute for Energy and Materials Processes-Particle Science and Technology (EMPI-PST), Carl-Benz-Straße 199, 47057, Duisburg, Germany.

Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Carl-Benz-Straße 199, 47057, Duisburg, Germany.

出版信息

Small Methods. 2025 Jul;9(7):e2402079. doi: 10.1002/smtd.202402079. Epub 2025 Apr 14.

Abstract

This study demonstrates thermal imaging as a non-destructive, real-time quality-control-method for detecting coating defects, analyzing mass loading, and understanding drying dynamics in silicon-based thin coatings. Thermal imaging identifies critical defects such as streaks, pinholes, and chatter marks through distinct thermal signatures, with streaks reducing surface temperature by up to 15 °C. It establishes strong correlations between surface temperature, mass loading, and coating thickness: for instance, a 100 µm wet film thickness shows a surface temperature of ≈50 °C, corresponding to a mass loading of 2.4 mg cm⁻. Drying dynamics reveal that thicker coatings retain more solvent, prolong drying, and shrink significantly, with 100 µm wet-gap coatings shrinking by up to 60%. A Random Forest machine learning model predicts mass loading with high accuracy (±0.3 mg cm⁻) using surface temperature data, highlighting the feasibility of thermal imaging-based quality estimation. While validated in a batch process, this approach is well-suited for integration into roll-to-roll production across diverse thin coating applications, such as batteries, solar cells, and functional films. Thermal imaging provides a robust pathway for real-time defect detection, drying optimization, and quality control, improving coating performance and production reliability.

摘要

本研究表明,热成像技术可作为一种无损实时质量控制方法,用于检测硅基薄膜涂层中的涂层缺陷、分析质量负载并了解干燥动力学。热成像通过独特的热信号识别诸如条纹、针孔和振纹等关键缺陷,条纹可使表面温度降低多达15°C。它建立了表面温度、质量负载和涂层厚度之间的强相关性:例如,100μm的湿膜厚度显示表面温度约为50°C,对应质量负载为2.4mg cm⁻²。干燥动力学表明,较厚的涂层保留更多溶剂,干燥时间延长且收缩明显,100μm湿间隙涂层收缩多达60%。随机森林机器学习模型利用表面温度数据高精度(±0.3mg cm⁻²)预测质量负载,突出了基于热成像进行质量评估的可行性。虽然该方法在间歇过程中得到了验证,但非常适合集成到各种薄膜涂层应用(如电池、太阳能电池和功能薄膜)的卷对卷生产中。热成像为实时缺陷检测、干燥优化和质量控制提供了一条有力途径,可提高涂层性能和生产可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b71/12285618/80ebe382dd8e/SMTD-9-2402079-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验