Minnesota Cooperative Fish and Wildlife Research Unit, University of Minnesota, Minneapolis, MN, USA.
U.S. Geological Survey, Minnesota Cooperative Fish and Wildlife Research Unit, Minneapolis, MN, USA.
J Anim Ecol. 2022 Sep;91(9):1755-1769. doi: 10.1111/1365-2656.13779. Epub 2022 Jul 31.
Technological advances in the field of animal tracking have greatly expanded the potential to remotely monitor animals, opening the door to exploring how animals shift their behaviour over time or respond to external stimuli. A wide variety of animal-borne sensors can provide information on an animal's location, movement characteristics, external environmental conditions and internal physiological status. Here, we demonstrate how piecewise regression can be used to identify the presence and timing of potential shifts in a variety of biological responses using multiple biotelemetry data streams. Different biological latent states can be inferred by partitioning a time-series into multiple segments based on changes in modelled responses (e.g. their mean, variance, trend, degree of autocorrelation) and specifying a unique model structure for each interval. We provide six example applications highlighting a variety of taxonomic species, data streams, timescales and biological phenomena. These examples include a short-term behavioural response (flee and return) by a trumpeter swan Cygnus buccinator following a GPS collar deployment; remote identification of parturition based on movements by a pregnant moose Alces alces; a physiological response (spike in heart-rate) in a black bear Ursus americanus to a stressful stimulus (presence of a drone); a mortality event of a trumpeter swan signalled by changes in collar temperature and overall dynamic body acceleration; an unsupervised method for identifying the onset, return, duration and staging use of sandhill crane Antigone canadensis migration; and estimation of the transition between incubation and brood-rearing (i.e. hatching) for a breeding trumpeter swan. We implement analyses using the mcp package in R, which provides functionality for specifying and fitting a wide variety of user-defined model structures in a Bayesian framework and methods for assessing and comparing models using information criteria and cross-validation measures. These simple modelling approaches are accessible to a wide audience and offer a straightforward means of assessing a variety of biologically relevant changes in animal behaviour.
动物追踪领域的技术进步极大地扩展了远程监测动物的潜力,为探索动物如何随时间改变行为或对外界刺激做出反应提供了可能。各种各样的动物携带传感器可以提供动物位置、运动特征、外部环境条件和内部生理状态的信息。在这里,我们展示了如何使用分段回归来识别多种生物遥测数据流中潜在变化的存在和时间。通过根据模型响应(例如,其均值、方差、趋势、自相关程度)的变化将时间序列划分为多个段,并为每个区间指定独特的模型结构,可以推断出不同的生物潜在状态。我们提供了六个示例应用,突出了各种分类物种、数据流、时间尺度和生物学现象。这些示例包括一只喇叭天鹅 Cygnus buccinator 在 GPS 项圈部署后出现的短期行为反应(逃离和返回);基于一只怀孕驼鹿 Alces alces 的运动远程识别分娩;一只美洲黑熊 Ursus americanus 对压力刺激(无人机的存在)的生理反应(心率飙升);一只喇叭天鹅因项圈温度和整体动态身体加速度变化而死亡的事件;一种用于识别沙丘鹤 Antigone canadensis 迁徙开始、返回、持续时间和阶段使用的无监督方法;以及对繁殖喇叭天鹅孵化和育雏(即孵化)之间过渡的估计。我们使用 R 中的 mcp 包实现了分析,该包提供了在贝叶斯框架中指定和拟合各种用户定义的模型结构的功能,以及使用信息准则和交叉验证措施评估和比较模型的方法。这些简单的建模方法易于广大受众使用,为评估动物行为的各种生物学相关变化提供了一种简单的方法。