Suppr超能文献

预测结直肠癌患者预后的列线图的开发与验证

Development and validation of nomograms for predicting the prognosis of colorectal cancer patients.

作者信息

An Yingqi, Gong Jianping, Xiao Aitang

机构信息

Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Transl Cancer Res. 2025 Mar 30;14(3):1651-1663. doi: 10.21037/tcr-24-1924. Epub 2025 Mar 27.

Abstract

BACKGROUND

Accurate prognosis prediction is essential in colorectal cancer (CRC) for guiding treatment decisions, yet the traditional tumor-node-metastasis (TNM) staging system often lacks precision. This study aimed to develop improved prognostic tools for CRC patients.

METHODS

Prognostic nomogram models were developed using data from 2,435 CRC patients who underwent curative resection. Parameters were selected via least absolute shrinkage and selection operator (LASSO) regression to include overall survival (OS) and disease-free survival (DFS) nomograms. The performance of these nomograms was evaluated against the TNM staging system using ROC analysis, calibration curves, and decision curve analysis (DCA).

RESULTS

Critical prognostic factors identified included tumor invasion depth, distant metastasis, tumordifferentiation grade, extranodal tumor deposits (ENTD), R1 resection, and log odds of positive lymph nodes (LODDS). The OS nomogram demonstrated area under the curve (AUC) values of 0.786, 0.776, and 0.803 for predicting 1-, 3-, and 5-year survival, respectively, compared to 0.768, 0.750, and 0.782 for TNM staging. The DFS nomogram predicted 1-, 3-, and 5-year DFS with AUCs of 0.764, 0.777, and 0.789, respectively, compared to 0.762, 0.761, and 0.770 for TNM staging. Calibration plots indicated strong predictive capabilities, and DCA confirmed greater net benefits over TNM staging.

CONCLUSIONS

Our developed prognostic nomogram models offer enhanced accuracy over traditional TNM staging in predicting CRC prognosis. Integrating these models into clinical practice can potentially improve personalized treatment strategies for postoperative CRC patients, enhancing overall clinical outcomes.

摘要

背景

准确的预后预测对于指导结直肠癌(CRC)的治疗决策至关重要,但传统的肿瘤-淋巴结-转移(TNM)分期系统往往缺乏精确性。本研究旨在为CRC患者开发改进的预后工具。

方法

使用2435例行根治性切除的CRC患者的数据开发预后列线图模型。通过最小绝对收缩和选择算子(LASSO)回归选择参数,以纳入总生存(OS)和无病生存(DFS)列线图。使用ROC分析、校准曲线和决策曲线分析(DCA),对照TNM分期系统评估这些列线图的性能。

结果

确定的关键预后因素包括肿瘤浸润深度、远处转移、肿瘤分化程度、结外肿瘤沉积(ENTD)、R1切除以及阳性淋巴结对数比(LODDS)。OS列线图预测1年、3年和5年生存的曲线下面积(AUC)值分别为0.786、0.776和0.803,而TNM分期分别为0.768、0.750和0.782。DFS列线图预测1年、3年和5年DFS的AUC分别为0.764、0.777和0.789,而TNM分期分别为0.762、0.761和0.770。校准图表明具有强大的预测能力,DCA证实比TNM分期具有更大的净效益。

结论

我们开发的预后列线图模型在预测CRC预后方面比传统TNM分期具有更高的准确性。将这些模型整合到临床实践中可能会改善CRC术后患者的个性化治疗策略,提高总体临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e940/11985181/a750be6702ac/tcr-14-03-1651-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验