Suppr超能文献

胶质母细胞瘤浸润的个性化预测:数学模型、物理信息神经网络与多模态扫描

Personalized predictions of Glioblastoma infiltration: Mathematical models, Physics-Informed Neural Networks and multimodal scans.

作者信息

Zhang Ray Zirui, Ezhov Ivan, Balcerak Michal, Zhu Andy, Wiestler Benedikt, Menze Bjoern, Lowengrub John S

机构信息

Department of Mathematics, University of California Irvine, USA.

Technical University of Munich, Germany.

出版信息

Med Image Anal. 2025 Apr;101:103423. doi: 10.1016/j.media.2024.103423. Epub 2024 Dec 12.

Abstract

Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the prediction of spatial distributions of tumor cells. However, this requires estimating patient-specific parameters of the model from clinical data, which is a challenging inverse problem due to limited temporal data and the limited time between imaging and diagnosis. This work proposes a method that uses Physics-Informed Neural Networks (PINNs) to estimate patient-specific parameters of a reaction-diffusion partial differential equation (PDE) model of GBM growth from a single 3D structural MRI snapshot. PINNs embed both the data and the PDE into a loss function, thus integrating theory and data. Key innovations include the identification and estimation of characteristic non-dimensional parameters, a pre-training step that utilizes the non-dimensional parameters and a fine-tuning step to determine the patient specific parameters. Additionally, the diffuse-domain method is employed to handle the complex brain geometry within the PINN framework. The method is validated on both synthetic and patient datasets, showing promise for personalized GBM treatment through parametric inference within clinically relevant timeframes.

摘要

从医学磁共振成像(MRI)扫描预测胶质母细胞瘤(GBM)的浸润对于理解肿瘤生长动态和设计个性化放射治疗计划至关重要。GBM生长的数学模型可以补充数据,用于预测肿瘤细胞的空间分布。然而,这需要从临床数据中估计模型的患者特异性参数,由于时间数据有限以及成像和诊断之间的时间有限,这是一个具有挑战性的反问题。这项工作提出了一种方法,该方法使用物理信息神经网络(PINN)从单个3D结构MRI快照估计GBM生长的反应扩散偏微分方程(PDE)模型的患者特异性参数。PINN将数据和PDE都嵌入到损失函数中,从而将理论和数据整合在一起。关键创新包括特征无量纲参数的识别和估计、利用无量纲参数的预训练步骤以及确定患者特异性参数的微调步骤。此外,采用扩散域方法在PINN框架内处理复杂的脑几何形状。该方法在合成数据集和患者数据集上均得到验证,显示出在临床相关时间范围内通过参数推断实现个性化GBM治疗的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验