Zhang Jinqiang, Cao Yufei, Ou Pengfei, Lee Geonhui, Zhao Yufei, Liu Shijie, Shirzadi Erfan, Dorakhan Roham, Xie Ke, Tian Cong, Chen Yuanjun, Li Xiaoyan, Xiao Yurou Celine, Shayesteh Zeraati Ali, Miao Rui Kai, Park Sungjin, O'Brien Colin P, Ge Jun, Zhou Xin, Sinton David, Sargent Edward H
Department of Electrical and Computer Engineering, University of Toronto, 35 St George 7 Street, Toronto, Ontario, M5S 1A4, Canada.
Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's 11 College Road, Toronto, Ontario, M5S 3G8, Canada.
Nat Commun. 2025 Apr 15;16(1):3553. doi: 10.1038/s41467-025-58756-9.
Reactive capture - the integration of CO capture with electrochemical upgrade - offers the prospect of improving overall energy efficiency in captured-CO-to-fuels by eliminating the gas-phase CO desorption step, and by further offering a CO-free gas product stream. Two related challenges limit the potential impact of electrified reactive capture today: its propensity to produce lower-value C products (carbon products containing one carbon atom per molecule); and its failure to retain performance when fed dilute streams (e.g. ~1-10% CO). We posit that these could be addressed using catalysts that locally concentrate and activate in-situ generated CO: we integrate a redox-active polymeric network whose polymer fragments undergo reversible reduction during the electrochemical conversion process, enabling electron transfer to CO molecules generated in-situ from carbonate capture liquid. We report as a result a 55 ± 5% C (carbon products containing two or more carbon atoms per molecule) Faradaic efficiency (FE) at 300 mA/cm in an electrochemical reactive capture system in which the electrolysis stage is fed with 1 M KCO. We obtain 56 ± 4 wt% CH in the product gas stream. When we use a dilute stream consisting of 1% CO in N at the KOH capture stage, we retain the C FE to within 85% (relative) of its value achieved in the case of pure CO.
反应性捕获——将二氧化碳捕获与电化学升级相结合——通过消除气相二氧化碳解吸步骤,并进一步提供无二氧化碳的气体产物流,有望提高捕获二氧化碳制燃料的整体能源效率。目前,两个相关挑战限制了电化反应性捕获的潜在影响:其倾向于生成价值较低的含碳产物(每个分子含有一个碳原子的碳产物);以及当进料为稀释气流(例如~1-10%的一氧化碳)时,其性能无法保持。我们认为,可以使用能使原位生成的一氧化碳局部浓缩并活化的催化剂来解决这些问题:我们整合了一种氧化还原活性聚合物网络,其聚合物片段在电化学转化过程中经历可逆还原,从而使电子能够转移到由碳酸盐捕获液原位生成的一氧化碳分子上。结果,我们在一个电化反应性捕获系统中报告了在300 mA/cm²下55±5%的含碳量(每个分子含有两个或更多碳原子的碳产物)法拉第效率(FE),该系统的电解阶段进料为1 M的碳酸钾。我们在产气流中获得了56±4 wt%的甲烷。当我们在氢氧化钾捕获阶段使用由1%一氧化碳和氮气组成的稀释气流时,含碳量法拉第效率保持在纯一氧化碳情况下所达到值的85%(相对)以内。