Salim Marko Ferdian, Satoto Tri Baskoro Tunggul
Doctorate Program of Medical and Health Science, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
Department of Health Information and Services, Vocational College, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
Trop Med Health. 2025 Apr 14;53(1):54. doi: 10.1186/s41182-025-00734-4.
Dengue remains a major public health concern in tropical regions, including Yogyakarta, Indonesia. Understanding its spatiotemporal patterns and determinants is crucial for effective prevention strategies. This study explores the spatiotemporal determinants of dengue incidence and evaluates the spatial variability of predictors using a geographically weighted panel regression (GWPR) approach.
This ecological study applied a spatiotemporal approach, analyzing dengue incidence across 78 sub-districts in Yogyakarta from 2017 to 2022. The dataset included meteorological variables (rainfall, temperature, humidity, wind speed, and atmospheric pressure), sociodemographic data (population density), and land-use characteristics (built-up areas, crops, trees, water bodies, and flooded vegetation). A GWPR model with a Fixed Exponential kernel was used to assess local variations in predictor influence.
The Fixed Exponential Kernel GWPR model showed strong explanatory power (Adjusted R = 0.516, RSS = 43,097.96, AIC = 28,447.38). Local R-Square values ranged from 0.25 (low-performing sub-districts) to 0.75 (high-performing sub-districts), indicating significant spatial heterogeneity. Sub-districts such as Pakem, Cangkringan, and Girimulyo exhibited high local R values (>0.75), indicating robust model performance, whereas Kalibawang showed lower values (<0.25), suggesting weaker predictive power. High-dengue-burden sub-districts, including Kasihan (0.743), Banguntapan (0.731), Sewon (0.716), Wonosari (0.623), and Wates (0.540), demonstrated stronger associations between dengue incidence and key predictors. In Wonosari, the most influential predictors were Rainfall Lag 1, Rainfall Lag 3, temperature, humidity, wind speed, atmospheric pressure, and land-use variables, while in Wates, significant predictors included Rainfall Lag 1, Rainfall Lag 3, atmospheric pressure, and land-use factors. Lower model performance in Sedayu and Kalibawang suggests the necessity of incorporating additional predictors such as sanitation conditions and vector control activities.
The GWPR model provides valuable insights into the spatiotemporal dynamics of dengue incidence, emphasizing the role of localized predictors. Spatially adaptive prevention strategies focusing on high-risk areas are essential for effective dengue control in Yogyakarta and similar tropical regions.
登革热仍是包括印度尼西亚日惹在内的热带地区主要的公共卫生问题。了解其时空模式和决定因素对于制定有效的预防策略至关重要。本研究采用地理加权面板回归(GWPR)方法探讨登革热发病率的时空决定因素,并评估预测因素的空间变异性。
本生态研究采用时空方法,分析了2017年至2022年日惹78个分区的登革热发病率。数据集包括气象变量(降雨量、温度、湿度、风速和大气压力)、社会人口数据(人口密度)以及土地利用特征(建成区、农作物、树木、水体和水淹植被)。使用具有固定指数核的GWPR模型评估预测因素影响的局部变化。
固定指数核GWPR模型显示出很强的解释力(调整R=0.516,残差平方和=43097.96,赤池信息准则=28447.38)。局部R平方值范围从0.25(表现较差的分区)到0.75(表现较好的分区),表明存在显著的空间异质性。帕肯、仓格林安和吉利穆约等分区表现出较高的局部R值(>0.75),表明模型性能稳健,而卡利巴旺的R值较低(<0.25),表明预测能力较弱。登革热负担较重的分区,包括卡西汉(0.743)、班贡塔潘(0.731)、塞翁(0.716)、沃诺萨里(0.623)和瓦特斯(0.540),登革热发病率与关键预测因素之间的关联更强。在沃诺萨里,最具影响力的预测因素是降雨滞后1、降雨滞后3、温度、湿度、风速、大气压力和土地利用变量,而在瓦特斯,显著的预测因素包括降雨滞后1、降雨滞后3、大气压力和土地利用因素。塞达尤和卡利巴旺较低的模型性能表明有必要纳入额外的预测因素,如卫生条件和病媒控制活动。
GWPR模型为登革热发病率的时空动态提供了有价值的见解,强调了局部预测因素的作用。针对高风险地区的空间适应性预防策略对于日惹及类似热带地区有效控制登革热至关重要。