Suppr超能文献

基于阅读漫画时的眼球运动对人格特质进行预测。

Personality traits prediction based on eye movements while reading manga.

作者信息

Wada Yuichi

机构信息

Graduate School of Information Sciences, Tohoku University, Sendai, Japan.

出版信息

Front Psychol. 2025 Mar 31;16:1509569. doi: 10.3389/fpsyg.2025.1509569. eCollection 2025.

Abstract

BACKGROUND

Previous studies utilizing machine learning methods have demonstrated that personal traits can be predicted from eye movement data recorded in real-world situations, such as navigating a university campus or browsing one's Facebook news feed. The objective of this study was to conceptually replicate and extend these findings in a different type of visual engagement. Specifically, we aimed to predict individuals' personal traits using eye movements that reflect gaze behaviors while reading manga (Japanese comics).

METHODS

We recorded the eye movements of 51 participants as they read manga and trained several machine learning classifiers to predict the levels of each of the self-reported Big Five personality traits from the eye movement features extracted from their reading behavior. The models' performance was evaluated using cross-validation, and the SHapley Additive exPlanation (SHAP) approach was employed to elucidate the classification model by identifying important features and their impacts on the model output.

RESULTS

Among the Big Five personality traits, only extraversion was predictable. The evaluation results demonstrated that the best model achieved comparable performance with previous literature, with a macro F1 score of 0.49. Analysis of the SHAP value plots showed that a high fixation rate, pupillary response, and blink rate were informative indicators.

CONCLUSION

The results partially replicated the previously noted associations between eye movement and personality traits. We found that gaze behaviors observed during reading manga are informative of an individual's extraversion personality trait. We also point out several potential advantages of using manga for gaze-based personality detection.

摘要

背景

以往利用机器学习方法的研究表明,可以根据在现实世界情境中记录的眼动数据预测个人特质,比如在大学校园导航或浏览个人脸书新闻源时。本研究的目的是在另一种视觉参与类型中从概念上复制并扩展这些发现。具体而言,我们旨在利用阅读漫画(日本漫画)时反映注视行为的眼动来预测个体的个人特质。

方法

我们记录了51名参与者阅读漫画时的眼动情况,并训练了几个机器学习分类器,以根据从他们的阅读行为中提取的眼动特征来预测自我报告的大五人格特质中每一项的水平。使用交叉验证评估模型的性能,并采用夏普利值法(SHAP)通过识别重要特征及其对模型输出的影响来阐释分类模型。

结果

在大五人格特质中,只有外向性是可预测的。评估结果表明,最佳模型取得了与先前文献相当的性能,宏观F1分数为0.49。对SHAP值图的分析表明,高注视率、瞳孔反应和眨眼率是有信息量的指标。

结论

研究结果部分复制了先前指出的眼动与人格特质之间的关联。我们发现,阅读漫画时观察到的注视行为能反映个体的外向性人格特质。我们还指出了使用漫画进行基于注视的人格检测的几个潜在优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cfc/11994591/f259b9937f27/fpsyg-16-1509569-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验