Suppr超能文献

食管癌的呼吸生物标志物:识别、定量及诊断建模

Breath biomarkers for esophageal cancer: identification, quantification, and diagnostic modeling.

作者信息

Ren Yuke, Wang Fei, Zhu Ziyi, Luo Raojun, Lv Guojun, Cui Haibin

机构信息

Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou, 310027, China.

Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

出版信息

Anal Sci. 2025 Apr 15. doi: 10.1007/s44211-025-00769-x.

Abstract

Esophageal cancer is a major global health issue with a high mortality rate. Early diagnosis is crucial for improving patient outcomes, but traditional diagnostic methods are often invasive and costly. This study explores the potential of exhaled volatile organic compounds (VOCs) as a non-invasive diagnostic tool for esophageal cancer. Using gas chromatography-mass spectrometry (GC-MS), we analyzed the breath samples of 80 esophageal cancer patients and 60 healthy controls, identifying and quantifying over 100 VOCs. The results revealed significant differences in the concentrations of VOCs such as acetone, ethanol, and isoprene between the two groups. A multi-parameter regression diagnostic model based on a neural network algorithm achieved an accuracy of 90.3% in distinguishing esophageal cancer patients from healthy individuals. Further optimization incorporating physiological factors, including smoking, drinking, and dietary habits, improved the model's accuracy to 92.4%, with a specificity of 93.1%, representing a significant improvement over previous studies. These results suggest that VOCs analysis in exhaled breath holds great promise as a non-invasive, cost-effective, and accurate method for early detection of esophageal cancer.

摘要

食管癌是一个全球性的重大健康问题,死亡率很高。早期诊断对于改善患者预后至关重要,但传统的诊断方法往往具有侵入性且成本高昂。本研究探讨了呼出挥发性有机化合物(VOCs)作为食管癌非侵入性诊断工具的潜力。我们使用气相色谱-质谱联用仪(GC-MS)分析了80例食管癌患者和60例健康对照者的呼吸样本,鉴定并定量了100多种VOCs。结果显示,两组之间丙酮、乙醇和异戊二烯等VOCs的浓度存在显著差异。基于神经网络算法的多参数回归诊断模型在区分食管癌患者和健康个体方面的准确率达到了90.3%。进一步纳入吸烟、饮酒和饮食习惯等生理因素进行优化后,模型的准确率提高到了92.4%,特异性为93.1%,比以往研究有了显著提高。这些结果表明,呼出气体中的VOCs分析作为一种非侵入性、经济高效且准确的食管癌早期检测方法具有很大的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验