Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
Proteins. 2023 Feb;91(2):196-208. doi: 10.1002/prot.26422. Epub 2022 Oct 8.
The continued emergence of new SARS-CoV-2 variants has accentuated the growing need for fast and reliable methods for the design of potentially neutralizing antibodies (Abs) to counter immune evasion by the virus. Here, we report on the de novo computational design of high-affinity Ab variable regions (Fv) through the recombination of VDJ genes targeting the most solvent-exposed hACE2-binding residues of the SARS-CoV-2 spike receptor binding domain (RBD) protein using the software tool OptMAVEn-2.0. Subsequently, we carried out computational affinity maturation of the designed variable regions through amino acid substitutions for improved binding with the target epitope. Immunogenicity of designs was restricted by preferring designs that match sequences from a 9-mer library of "human Abs" based on a human string content score. We generated 106 different antibody designs and reported in detail on the top five that trade-off the greatest computational binding affinity for the RBD with human string content scores. We further describe computational evaluation of the top five designs produced by OptMAVEn-2.0 using a Rosetta-based approach. We used Rosetta SnugDock for local docking of the designs to evaluate their potential to bind the spike RBD and performed "forward folding" with DeepAb to assess their potential to fold into the designed structures. Ultimately, our results identified one designed Ab variable region, P1.D1, as a particularly promising candidate for experimental testing. This effort puts forth a computational workflow for the de novo design and evaluation of Abs that can quickly be adapted to target spike epitopes of emerging SARS-CoV-2 variants or other antigenic targets.
新的 SARS-CoV-2 变体不断出现,凸显出迫切需要快速可靠的方法来设计潜在的中和抗体 (Abs),以对抗病毒的免疫逃逸。在这里,我们报告了通过使用软件工具 OptMAVEn-2.0 对靶向 SARS-CoV-2 刺突受体结合域 (RBD) 蛋白中最暴露溶剂的 hACE2 结合残基的 VDJ 基因进行重组,从头设计高亲和力 Ab 可变区 (Fv)。随后,我们通过氨基酸取代对设计的可变区进行计算亲和力成熟,以改善与靶标表位的结合。设计的免疫原性受到限制,优先选择与基于人类字符串内容评分的 9 -mer“人类 Abs”文库中的序列匹配的设计。我们生成了 106 种不同的抗体设计,并详细报告了前 5 种设计,它们在与 RBD 的计算结合亲和力与人类字符串内容评分之间取得了最佳折衷。我们进一步描述了使用基于 Rosetta 的方法对 OptMAVEn-2.0 产生的前 5 个设计进行的计算评估。我们使用 Rosetta SnugDock 对设计进行局部对接,以评估它们与刺突 RBD 结合的潜力,并使用 DeepAb 进行“正向折叠”以评估它们折叠成设计结构的潜力。最终,我们的结果确定了一个设计的 Ab 可变区 P1.D1,作为实验测试的特别有前途的候选者。这项工作提出了一种从头开始设计和评估 Abs 的计算工作流程,可以快速适应新兴 SARS-CoV-2 变体或其他抗原靶标的刺突表位。