Suppr超能文献

基于深度学习的蛋白质相互作用分析预测 SARS-CoV-2 感染性和变异进化。

Deep-learning-enabled protein-protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution.

机构信息

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China.

Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China.

出版信息

Nat Med. 2023 Aug;29(8):2007-2018. doi: 10.1038/s41591-023-02483-5. Epub 2023 Jul 31.

Abstract

Host-pathogen interactions and pathogen evolution are underpinned by protein-protein interactions between viral and host proteins. An understanding of how viral variants affect protein-protein binding is important for predicting viral-host interactions, such as the emergence of new pathogenic SARS-CoV-2 variants. Here we propose an artificial intelligence-based framework called UniBind, in which proteins are represented as a graph at the residue and atom levels. UniBind integrates protein three-dimensional structure and binding affinity and is capable of multi-task learning for heterogeneous biological data integration. In systematic tests on benchmark datasets and further experimental validation, UniBind effectively and scalably predicted the effects of SARS-CoV-2 spike protein variants on their binding affinities to the human ACE2 receptor, as well as to SARS-CoV-2 neutralizing monoclonal antibodies. Furthermore, in a cross-species analysis, UniBind could be applied to predict host susceptibility to SARS-CoV-2 variants and to predict future viral variant evolutionary trends. This in silico approach has the potential to serve as an early warning system for problematic emerging SARS-CoV-2 variants, as well as to facilitate research on protein-protein interactions in general.

摘要

宿主-病原体相互作用和病原体进化是由病毒和宿主蛋白之间的蛋白质-蛋白质相互作用所支撑的。了解病毒变体如何影响蛋白质-蛋白质结合对于预测病毒-宿主相互作用(如新型 SARS-CoV-2 变体的出现)非常重要。在这里,我们提出了一种名为 UniBind 的基于人工智能的框架,其中蛋白质在残基和原子水平上表示为图。UniBind 集成了蛋白质三维结构和结合亲和力,并且能够进行多任务学习,以整合异构生物数据。在基准数据集的系统测试和进一步的实验验证中,UniBind 有效地、可扩展地预测了 SARS-CoV-2 刺突蛋白变体对其与人类 ACE2 受体结合亲和力的影响,以及对 SARS-CoV-2 中和单克隆抗体的影响。此外,在跨物种分析中,UniBind 可用于预测宿主对 SARS-CoV-2 变体的易感性,并预测未来病毒变体的进化趋势。这种计算方法有可能成为出现问题的新型 SARS-CoV-2 变体的早期预警系统,并促进一般蛋白质-蛋白质相互作用的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验