Suppr超能文献

利用松弛序列空间中的优化进行可扩展的蛋白质设计。

Scalable protein design using optimization in a relaxed sequence space.

机构信息

Laboratory for Biomolecular Nanotechnology, Department of Biosciences, School of Natural Sciences Technical University of Munich, 85748 Garching, Germany.

Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany.

出版信息

Science. 2024 Oct 25;386(6720):439-445. doi: 10.1126/science.adq1741. Epub 2024 Oct 24.

Abstract

Machine learning (ML)-based design approaches have advanced the field of de novo protein design, with diffusion-based generative methods increasingly dominating protein design pipelines. Here, we report a "hallucination"-based protein design approach that functions in relaxed sequence space, enabling the efficient design of high-quality protein backbones over multiple scales and with broad scope of application without the need for any form of retraining. We experimentally produced and characterized more than 100 proteins. Three high-resolution crystal structures and two cryo-electron microscopy density maps of designed single-chain proteins comprising up to 1000 amino acids validate the accuracy of the method. Our pipeline can also be used to design synthetic protein-protein interactions, as validated experimentally by a set of protein heterodimers. Relaxed sequence optimization offers attractive performance with respect to designability, scope of applicability for different design problems, and scalability across protein sizes.

摘要

基于机器学习 (ML) 的设计方法推动了从头蛋白质设计领域的发展,基于扩散的生成方法越来越主导蛋白质设计流程。在这里,我们报告了一种基于“幻觉”的蛋白质设计方法,该方法在宽松的序列空间中起作用,能够在多个尺度上高效设计高质量的蛋白质骨架,并具有广泛的应用范围,而无需任何形式的再训练。我们通过实验生产和表征了 100 多种蛋白质。三个高分辨率的晶体结构和两个设计的包含多达 1000 个氨基酸的单链蛋白质的冷冻电子显微镜密度图验证了该方法的准确性。我们的流水线还可以用于设计合成蛋白质-蛋白质相互作用,这通过一组蛋白质异二聚体的实验得到了验证。松弛序列优化在设计性、不同设计问题的适用范围以及蛋白质大小的可扩展性方面具有吸引力。

相似文献

5
Automated model building and protein identification in cryo-EM maps.冷冻电镜映射中自动模型构建和蛋白质鉴定。
Nature. 2024 Apr;628(8007):450-457. doi: 10.1038/s41586-024-07215-4. Epub 2024 Feb 26.
6
Hallucinating symmetric protein assemblies.幻觉对称蛋白组装体。
Science. 2022 Oct 7;378(6615):56-61. doi: 10.1126/science.add1964. Epub 2022 Sep 15.

引用本文的文献

9
De novo design of transmembrane fluorescence-activating proteins.跨膜荧光激活蛋白的从头设计。
Nature. 2025 Apr;640(8057):249-257. doi: 10.1038/s41586-025-08598-8. Epub 2025 Feb 19.

本文引用的文献

1
An all-atom protein generative model.全原子蛋白质生成模型。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311500121. doi: 10.1073/pnas.2311500121. Epub 2024 Jun 25.
4
Automated model building and protein identification in cryo-EM maps.冷冻电镜映射中自动模型构建和蛋白质鉴定。
Nature. 2024 Apr;628(8007):450-457. doi: 10.1038/s41586-024-07215-4. Epub 2024 Feb 26.
5
Sparks of function by de novo protein design.从头设计蛋白质的功能火花。
Nat Biotechnol. 2024 Feb;42(2):203-215. doi: 10.1038/s41587-024-02133-2. Epub 2024 Feb 15.
6
An atlas of protein homo-oligomerization across domains of life.生命领域中蛋白质同源寡聚体的图谱。
Cell. 2024 Feb 15;187(4):999-1010.e15. doi: 10.1016/j.cell.2024.01.022. Epub 2024 Feb 6.
7
Protein structure generation via folding diffusion.通过折叠扩散生成蛋白质结构
Nat Commun. 2024 Feb 5;15(1):1059. doi: 10.1038/s41467-024-45051-2.
8
9
Illuminating protein space with a programmable generative model.用可编程生成模型照亮蛋白质空间。
Nature. 2023 Nov;623(7989):1070-1078. doi: 10.1038/s41586-023-06728-8. Epub 2023 Nov 15.
10
De novo design of protein structure and function with RFdiffusion.利用 RFdiffusion 从头设计蛋白质结构和功能。
Nature. 2023 Aug;620(7976):1089-1100. doi: 10.1038/s41586-023-06415-8. Epub 2023 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验