Tang Liming, Zhong Jinrong, Zeng Mei'e, Deng Weiwei, Huang Chunmei, Ye Shuifen, Li Fengjin, Lai Dongqin, Huang Wanling, Chen Bin, Deng Xiaoyuan, Lai Xiaoying, Wu Lirong, Zou Bilan, Qiu Hanzhong, Liao Ying
Department of General Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.
Front Psychiatry. 2025 Apr 1;16:1555513. doi: 10.3389/fpsyt.2025.1555513. eCollection 2025.
Patients with somatization symptoms are at elevated risk of depression, yet underdiagnosis persists due to cultural tendencies (e.g., in China) to express psychological distress via physical complaints. Existing predictive models lack integration of sociocultural and physiological factors, particularly in non-Western populations.
To develop a culturally tailored risk-prediction model for depression in patients with somatization symptoms, emphasizing early identification and personalized intervention.
A prospective cohort study included 200 somatization patients (SSS≥38, PHQ-2<3) from a Chinese hospital (May 2020-August 2022). LASSO regression identified predictors from 18 variables, followed by multivariate logistic regression to construct a nomogram. Model performance was assessed via ROC-AUC, calibration curves, Hosmer-Lemeshow test, and decision curve analysis (DCA). Internal validation used 200 bootstrap resamples.
Five independent predictors were identified: advanced age (OR=1.11, 95% CI: 1.02-1.20), poor self-rated health (OR=2.07, 95% CI: 1.04-4.30), lack of co-residence with children (OR=1.63, 95% CI: 1.10-2.42), low income (OR=1.45, 95% CI: 1.05-2.01), and self-medication (OR=1.32, 95% CI: 1.01-1.73). The nomogram demonstrated strong discrimination (AUC=0.810, 95% CI: 0.728-0.893) and calibration (Hosmer-Lemeshow p=0.32). DCA confirmed clinical utility: at threshold probabilities >5%, the model provided higher net benefit than "treat-all" or "treat-none" strategies.
This model integrates sociocultural (e.g., family structure) and behavioral factors to predict depression risk in somatizing patients, particularly in East Asian contexts. It offers a practical tool for clinicians to prioritize high-risk individuals, reducing diagnostic delays and healthcare burdens. Future multicenter studies should validate its generalizability and incorporate biomarkers (e.g., inflammatory markers) to enhance mechanistic insights.
躯体化症状患者患抑郁症的风险较高,但由于文化倾向(如在中国),人们倾向于通过身体不适来表达心理困扰,导致该症状仍未得到充分诊断。现有的预测模型缺乏社会文化和生理因素的整合,尤其是在非西方人群中。
开发一种针对有躯体化症状患者的抑郁症文化适应性风险预测模型,强调早期识别和个性化干预。
一项前瞻性队列研究纳入了一家中国医院(2020年5月至2022年8月)的200名躯体化患者(躯体化症状严重程度量表≥38,患者健康问卷-2<3)。套索回归从18个变量中确定预测因素,随后进行多变量逻辑回归以构建列线图。通过受试者工作特征曲线下面积、校准曲线、Hosmer-Lemeshow检验和决策曲线分析评估模型性能。内部验证使用200个自抽样重采样。
确定了五个独立预测因素:高龄(比值比=1.11,95%置信区间:1.02-1.20)、自我健康评价差(比值比=2.07,95%置信区间:1.04-4.30)、与子女不住在一起(比值比=1.63,95%置信区间:1.10-2.42)、低收入(比值比=1.45,95%置信区间:1.05-2.01)和自我用药(比值比=1.32,95%置信区间:1.01-1.73)。列线图显示出较强的区分能力(曲线下面积=0.810,95%置信区间:0.728-0.893)和校准度(Hosmer-Lemeshow检验p=0.32)。决策曲线分析证实了该模型的临床实用性:在阈值概率>5%时,该模型提供的净效益高于“全部治疗”或“全部不治疗”策略。
该模型整合了社会文化因素(如家庭结构)和行为因素,以预测躯体化患者的抑郁风险,尤其是在东亚背景下。它为临床医生提供了一种实用工具,可对高危个体进行优先排序,减少诊断延迟和医疗负担。未来的多中心研究应验证其普遍性,并纳入生物标志物(如炎症标志物)以增强对发病机制的理解。