Wang L U, Zhang Zhengwu, Dunson David
DEPARTMENT OF STATISTICS, CENTRAL SOUTH UNIVERSITY, CHANGSHA HUNAN 410083, P.R. CHINA.
DEPARTMENT OF BIOSTATISTICS AND COMPUTATIONAL BIOLOGY, UNIVERSITY OF ROCHESTER, ROCHESTER, NEW YORK 14642, USA.
Ann Appl Stat. 2019 Mar;13(1):85-112. doi: 10.1214/18-AOAS1193. Epub 2019 Apr 10.
This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the observed data consist of graphs, , , with each graph consisting of a collection of edges between nodes. In brain connectomics, the graph for an individual corresponds to a set of interconnections among brain regions. Such data can be organized as a binary adjacency matrix for each , with ones indicating an edge between a pair of nodes and zeros indicating no edge. When nodes have a shared meaning across replicates , it becomes of substantial interest to study similarities and differences in the adjacency matrices. To address this problem, we propose a method to estimate a common structure and low-dimensional individual-specific deviations from replicated networks. The proposed Multiple GRAph Factorization (M-GRAF) model relies on a logistic regression mapping combined with a hierarchical eigenvalue decomposition. We develop an efficient algorithm for estimation and study basic properties of our approach. Simulation studies show excellent operating characteristics and we apply the method to human brain connectomics data.
本文聚焦于研究复制网络或图值数据中共享结构和个体特定结构的问题。具体而言,观测数据由图(G_1),(G_2),(\cdots),(G_n)组成,每个图由(p)个节点之间的一组边构成。在脑连接组学中,个体的图对应于脑区之间的一组互连。此类数据可针对每个(i)组织为一个二进制邻接矩阵,其中(1)表示一对节点之间存在边,(0)表示不存在边。当节点在复制数据(G_1),(G_2),(\cdots),(G_n)中具有共同含义时,研究邻接矩阵中的异同就变得非常有意义。为解决此问题,我们提出一种方法来估计复制网络的公共结构和低维个体特定偏差。所提出的多重图分解(M - GRAF)模型依赖于逻辑回归映射与分层特征值分解相结合。我们开发了一种有效的估计算法,并研究了我们方法的基本性质。模拟研究显示了出色的操作特性,并且我们将该方法应用于人类脑连接组学数据。