Wang Jeffrey, Leger Rachel, Chen Dong, Seheult Jansen
Biology Department, Carleton College, Northfield, MN, United States.
Special Coagulation Laboratory, Mayo Clinic, Rochester, MN, United States.
J Appl Lab Med. 2025 Jul 1;10(4):911-923. doi: 10.1093/jalm/jfaf039.
The lupus anticoagulant (LAC) is an important laboratory criterion in the diagnosis of antiphospholipid antibody syndrome. LAC testing at the Mayo Clinic Special Coagulation Laboratory includes up to 13 tests, which are interpreted by trained physicians to identify the presence of LAC and rule out anticoagulant interferences. This feasibility study explored the use of two deep neural network (DNN) architectures for multilabel classification of LAC profiles as a first step toward automating interpretation.
Seven thousand two hundred and two retrospective cases were randomly split (64:16:20) for training, validation, and test, respectively. LAC positivity by dilute Russell's viper venom time (LAC-DRVVT) and activated partial thromboplastin time (LAC-APTT) and the presence of warfarin (WAR) and heparin (HEP) were adjudicated by one expert. DNN architectures included: single-output DNNs using domain-knowledge input feature selection and a single-column multioutput DNN using all 13 inputs.
Domain-knowledge-naïve multioutput DNN achieved similar or improved performance for all 4 label prediction tasks compared with domain knowledge optimized DNNs: F1 scores of 0.977 vs 0.968 for LAC-DRVVT, 0.954 vs 0.945 for LAC-APTT, 0.961 vs 0.957 for HEP, and 0.995 vs 0.977 for WAR, respectively.
The comparable performance of the 4 domain knowledge optimized DNNs and the multioutput DNN using all 13 input features suggests that the DNN may learn feature importance or mapping to a task without explicit input selection. Given its relative simplicity and versatility, the multioutput DNN is the preferred choice for implementation in a clinical laboratory to standardize LAC diagnosis.
狼疮抗凝物(LAC)是抗磷脂抗体综合征诊断中的一项重要实验室标准。梅奥诊所特殊凝血实验室的LAC检测包括多达13项检测,由经过培训的医生进行解读,以确定LAC的存在并排除抗凝干扰。这项可行性研究探索了使用两种深度神经网络(DNN)架构对LAC谱进行多标签分类,作为实现自动化解读的第一步。
7202例回顾性病例被随机分为三组(64:16:20),分别用于训练、验证和测试。由一位专家判定稀释蝰蛇毒时间(LAC-DRVVT)和活化部分凝血活酶时间(LAC-APTT)的LAC阳性以及华法林(WAR)和肝素(HEP)的存在情况。DNN架构包括:使用领域知识输入特征选择的单输出DNN和使用所有13个输入的单列多输出DNN。
与领域知识优化的DNN相比,未使用领域知识的多输出DNN在所有4个标签预测任务中均取得了相似或更好的性能:LAC-DRVVT的F1分数分别为0.977和0.968,LAC-APTT为0.954和0.945,HEP为0.961和0.957,WAR为0.995和0.977。
4种领域知识优化的DNN与使用所有13个输入特征的多输出DNN的可比性能表明,DNN可能在没有明确输入选择的情况下学习特征重要性或映射到任务。鉴于其相对简单和通用性,多输出DNN是临床实验室实施以标准化LAC诊断的首选。