Suppr超能文献

一种用于疑似前列腺癌患者病变检测和PI-RADS分类的全自动人工智能算法的诊断性能。

Diagnostic performance of a fully automated AI algorithm for lesion detection and PI-RADS classification in patients with suspected prostate cancer.

作者信息

Engel Hannes, Nedelcu Andrea, Grimm Robert, von Busch Heinrich, Sigle August, Krauss Tobias, Schlett Christopher L, Weiss Jakob, Benndorf Matthias, Oerther Benedict

机构信息

Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Siemens Healthineers AG, Forchheim, Germany.

出版信息

Radiol Med. 2025 Apr 17. doi: 10.1007/s11547-025-02003-0.

Abstract

PURPOSE

To evaluate the diagnostic performance of a fully automated, commercially available AI algorithm for detecting prostate cancer and classifying lesions according to PI-RADS.

MATERIAL AND METHODS

In this retrospective single-center cohort study, we included consecutive patients with suspected prostate cancer who underwent 3T MRI between May 2017 and May 2020. Histopathological ground truth was targeted transperineal ultrasound-fusion guided biopsy and extensive systematic biopsy. We compared the results of the AI algorithm to those of human readers on both the lesion and patient level and determined the diagnostic performance.

RESULTS

A total of 272 patients with 436 target lesions were evaluated. Of these patients, 135 (49.6%) had clinically significant prostate cancer (sPCa), 35 (12.9%) had clinically insignificant prostate cancer (ISUP = 1), and 102 (37.5%) were benign. On patient level, the cancer detection rates of sPCa for AI versus human readers were 11% versus 18% for PI-RADS ≤ 2, 27% versus 11% for PI-RADS 3, 54% versus 41% for PI-RADS 4, and 74% versus 92% for PI-RADS 5. The AI showed significantly higher accuracy: 74% versus 63% for PI-RADS ≥ 4 (p < 0.01) and 70% versus 52% for PI-RADS ≥ 3 (p < 0.01). Additionally, the AI correctly classified 62 patients with human reading PI-RADS ≥ 3 as true negatives.

CONCLUSION

The AI algorithm proved to be a reliable and robust tool for lesion detection and classification. Its cancer detection rates and PI-RADS category distribution align with the results of recent meta-analyses, indicating precise risk stratification.

摘要

目的

评估一种全自动、市售的人工智能(AI)算法在检测前列腺癌以及根据前列腺影像报告和数据系统(PI-RADS)对病变进行分类方面的诊断性能。

材料与方法

在这项回顾性单中心队列研究中,我们纳入了2017年5月至2020年5月期间接受3T磁共振成像(MRI)检查的疑似前列腺癌连续患者。组织病理学金标准为经会阴超声融合引导活检和广泛系统活检。我们在病变和患者层面将AI算法的结果与人类阅片者的结果进行比较,并确定诊断性能。

结果

共评估了272例患者的436个目标病变。在这些患者中,135例(49.6%)患有临床显著性前列腺癌(sPCa),35例(12.9%)患有临床非显著性前列腺癌(ISUP = 1),102例(37.5%)为良性病变。在患者层面,对于PI-RADS≤2,AI检测sPCa的癌症检出率为11%,人类阅片者为18%;对于PI-RADS 3,分别为27%和11%;对于PI-RADS 4,分别为54%和41%;对于PI-RADS 5,分别为74%和92%。AI显示出显著更高的准确率:对于PI-RADS≥4,分别为74%和63%(p < 0.01);对于PI-RADS≥3,分别为70%和52%(p < 0.01)。此外,AI将62例人类阅片PI-RADS≥3的患者正确分类为真阴性。

结论

AI算法被证明是一种用于病变检测和分类的可靠且强大的工具。其癌症检出率和PI-RADS类别分布与近期荟萃分析的结果一致,表明精确的风险分层。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验