Suppr超能文献

基于深度学习的人工智能在前列腺 MRI 中的应用:简要总结。

Deep learning-based artificial intelligence applications in prostate MRI: brief summary.

机构信息

Molecular Imaging Branch, NCI, NIH, Bethesda, MD, USA.

Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontorio, Canada.

出版信息

Br J Radiol. 2022 Mar 1;95(1131):20210563. doi: 10.1259/bjr.20210563. Epub 2021 Dec 3.

Abstract

Prostate cancer (PCa) is the most common cancer type in males in the Western World. MRI has an established role in diagnosis of PCa through guiding biopsies. Due to multistep complex nature of the MRI-guided PCa diagnosis pathway, diagnostic performance has a big variation. Developing artificial intelligence (AI) models using machine learning, particularly deep learning, has an expanding role in radiology. Specifically, for prostate MRI, several AI approaches have been defined in the literature for prostate segmentation, lesion detection and classification with the aim of improving diagnostic performance and interobserver agreement. In this review article, we summarize the use of radiology applications of AI in prostate MRI.

摘要

前列腺癌(PCa)是西方男性最常见的癌症类型。MRI 通过引导活检在 PCa 的诊断中发挥着重要作用。由于 MRI 引导的 PCa 诊断途径具有多步骤的复杂性,因此其诊断性能存在很大差异。使用机器学习(尤其是深度学习)开发人工智能(AI)模型在放射学中发挥着越来越重要的作用。具体而言,对于前列腺 MRI,文献中已经定义了几种 AI 方法,用于前列腺分割、病灶检测和分类,目的是提高诊断性能和观察者间的一致性。在这篇综述文章中,我们总结了 AI 在前列腺 MRI 中的放射学应用。

相似文献

引用本文的文献

8
An overview of utilizing artificial intelligence in localized prostate cancer imaging.局部前列腺癌成像中人工智能应用概述。
Expert Rev Med Devices. 2025 Apr;22(4):293-310. doi: 10.1080/17434440.2025.2477601. Epub 2025 Mar 19.
9
New imaging techniques and trends in radiology.放射学中的新成像技术与趋势
Diagn Interv Radiol. 2025 Jan 16. doi: 10.4274/dir.2024.242926.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验