Young Kira A, Hosseini Mohsen, Mistry Jayna J, Morganti Claudia, Mills Taylor S, Cai Xiurong, James Brandon T, Nye Griffin J, Fournier Natalie R, Voisin Veronique, Chegini Ali, Schimmer Aaron D, Bader Gary D, Egan Grace, Mansour Marc R, Challen Grant A, Pietras Eric M, Fisher-Wellman Kelsey H, Ito Keisuke, Chan Steven M, Trowbridge Jennifer J
The Jackson Laboratory, Bar Harbor, ME, USA.
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
Nat Commun. 2025 Apr 16;16(1):3306. doi: 10.1038/s41467-025-57238-2.
The competitive advantage of mutant hematopoietic stem and progenitor cells (HSPCs) underlies clonal hematopoiesis (CH). Drivers of CH include aging and inflammation; however, how CH-mutant cells gain a selective advantage in these contexts is an unresolved question. Using a murine model of CH (Dnmt3a), we discover that mutant HSPCs sustain elevated mitochondrial respiration which is associated with their resistance to aging-related changes in the bone marrow microenvironment. Mutant HSPCs have DNA hypomethylation and increased expression of oxidative phosphorylation gene signatures, increased functional oxidative phosphorylation capacity, high mitochondrial membrane potential (Δψm), and greater dependence on mitochondrial respiration compared to wild-type HSPCs. Exploiting the elevated Δψm of mutant HSPCs, long-chain alkyl-TPP molecules (MitoQ, d-TPP) selectively accumulate in the mitochondria and cause reduced mitochondrial respiration, mitochondrial-driven apoptosis and ablate the competitive advantage of HSPCs ex vivo and in vivo in aged recipient mice. Further, MitoQ targets elevated mitochondrial respiration and the selective advantage of human DNMT3A-knockdown HSPCs, supporting species conservation. These data suggest that mitochondrial activity is a targetable mechanism by which CH-mutant HSPCs gain a selective advantage over wild-type HSPCs.
突变造血干细胞和祖细胞(HSPCs)的竞争优势是克隆性造血(CH)的基础。CH的驱动因素包括衰老和炎症;然而,CH突变细胞如何在这些情况下获得选择性优势仍是一个未解决的问题。利用CH的小鼠模型(Dnmt3a),我们发现突变的HSPCs维持线粒体呼吸增强,这与其对骨髓微环境中与衰老相关变化的抗性有关。与野生型HSPCs相比,突变的HSPCs存在DNA低甲基化和氧化磷酸化基因特征表达增加、功能性氧化磷酸化能力增强、线粒体膜电位(Δψm)高以及对线粒体呼吸的依赖性更大。利用突变HSPCs升高的Δψm,长链烷基-TPP分子(MitoQ、d-TPP)选择性地在线粒体中积累,并导致线粒体呼吸减少、线粒体驱动的细胞凋亡,并在体内外消除老年受体小鼠中HSPCs的竞争优势。此外,MitoQ靶向升高的线粒体呼吸以及人DNMT3A敲低HSPCs的选择性优势,支持物种保守性。这些数据表明,线粒体活性是一种可靶向的机制,通过该机制CH突变的HSPCs比野生型HSPCs获得选择性优势。