Vrdoljak Josip, Krešo Ante, Kumrić Marko, Martinović Dinko, Cvitković Ivan, Grahovac Marko, Vickov Josip, Bukić Josipa, Božic Joško
Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia.
Department of Surgery, University Hospital of Split, 21000 Split, Croatia.
Cancers (Basel). 2023 Apr 21;15(8):2400. doi: 10.3390/cancers15082400.
Breast cancer is a significant health issue affecting women worldwide, and accurately detecting lymph node metastasis is critical in determining treatment and prognosis. While traditional diagnostic methods have limitations and complications, artificial intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) offer promising solutions for improving and supplementing diagnostic procedures. Current research has explored state-of-the-art DL models for breast cancer lymph node classification from radiological images, achieving high performances (AUC: 0.71-0.99). AI models trained on clinicopathological features also show promise in predicting metastasis status (AUC: 0.74-0.77), whereas multimodal (radiomics + clinicopathological features) models combine the best from both approaches and also achieve good results (AUC: 0.82-0.94). Once properly validated, such models could greatly improve cancer care, especially in areas with limited medical resources. This comprehensive review aims to compile knowledge about state-of-the-art AI models used for breast cancer lymph node metastasis detection, discusses proper validation techniques and potential pitfalls and limitations, and presents future directions and best practices to achieve high usability in real-world clinical settings.
乳腺癌是一个影响全球女性的重大健康问题,准确检测淋巴结转移对于确定治疗方案和预后至关重要。虽然传统诊断方法存在局限性和并发症,但机器学习(ML)和深度学习(DL)等人工智能(AI)技术为改进和补充诊断程序提供了有前景的解决方案。当前研究探索了用于从放射图像中对乳腺癌淋巴结进行分类的先进DL模型,取得了较高的性能(AUC:0.71 - 0.99)。基于临床病理特征训练的AI模型在预测转移状态方面也显示出前景(AUC:0.74 - 0.77),而多模态(影像组学 + 临床病理特征)模型结合了两种方法的优点,也取得了良好的结果(AUC:0.82 - 0.94)。一旦经过适当验证,此类模型可极大地改善癌症治疗,尤其是在医疗资源有限的地区。这篇综述旨在汇总有关用于乳腺癌淋巴结转移检测的先进AI模型的知识,讨论适当的验证技术以及潜在的陷阱和局限性,并提出未来方向和最佳实践,以在实际临床环境中实现高可用性。