Gas Piotr, Suleman Muhammad, Khaliq Farah
Department of Electrical and Power Engineering, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, Krakow, Poland.
Department of Mathematics, Riphah Institute of Computing & Applied Sciences (RICAS), Riphah International University, Lahore, Punjab, Pakistan.
Nanotechnol Sci Appl. 2025 Apr 12;18:173-196. doi: 10.2147/NSA.S495377. eCollection 2025.
Nanotechnology can be used to treat a diversity of cancers with different physiological properties. Skin cancers are common among people affected by an excessive solar radiation of the ultraviolet (UV) range.
This paper describes a mathematical formulation and simulation approach for the magnetic hyperthermia therapy of skin cancer using gold-coated iron oxide (FeO@Au) magnetic nanoparticles (MNPs).
The authors created an artificial 3D geometry model of skin cancer with tissue-mimicking materials, constructed a mesh, and solved all the required physics for electro-thermal simulation using FEM-based software. The heat transfer in the skin tissue was modeled using the Pennes bioheat equation, and the Helmholtz-type equation of quasi-static magnetic field produced by a three-turned coil surrounding the tumor.
The simulated magnetic field pattern was compared with that of the analytical solution along the symmetry axis of the helical coil with good agreement. The obtained results show that the tumor damage is maximum in the tumor center and decreases towards its outer boundaries. Additionally, the impact of varying values of blood perfusion rate, blood density, blood specific heat capacity, heat dissipation produced by FeO@Au MNPs, and metabolic heat generation has been examined for thermal therapy. The performed simulations show that all these parameters influences heating characteristics of tumor tissues by gold-coated magnetic nanoparticles.
Gold-iron oxide magnetic nanoparticles succeeded to damage 90-99% skin cancer. Among all the contributing parameters, the blood perfusion is the most sensitive parameter in thermal therapy of skin tumor.
On the bases of results obtained, we recommend physicians to use FeO@Au MNPs in real time medical skin cancer treatments.
纳米技术可用于治疗具有不同生理特性的多种癌症。皮肤癌在受到紫外线(UV)范围内过度太阳辐射影响的人群中很常见。
本文描述了一种使用金包覆氧化铁(FeO@Au)磁性纳米颗粒(MNPs)对皮肤癌进行磁热疗的数学公式和模拟方法。
作者使用组织模拟材料创建了皮肤癌的人工三维几何模型,构建了网格,并使用基于有限元法的软件求解了电热模拟所需的所有物理问题。皮肤组织中的热传递使用彭尼斯生物热方程进行建模,而围绕肿瘤的三匝线圈产生的准静态磁场的亥姆霍兹型方程。
将模拟的磁场模式与沿螺旋线圈对称轴的解析解进行了比较,结果吻合良好。所得结果表明,肿瘤损伤在肿瘤中心最大,并向其外边界减小。此外,还研究了血液灌注率、血液密度、血液比热容、FeO@Au MNPs产生的热耗散以及代谢热生成等不同值对热疗的影响。进行的模拟表明,所有这些参数都会影响金包覆磁性纳米颗粒对肿瘤组织的加热特性。
金 - 氧化铁磁性纳米颗粒成功地破坏了90 - 99%的皮肤癌。在所有影响参数中,血液灌注是皮肤肿瘤热疗中最敏感的参数。
基于所得结果,我们建议医生在皮肤癌的实时医疗治疗中使用FeO@Au MNPs。