文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用[具体内容未给出]的银纳米颗粒的绿色合成与表征:抗菌和细胞毒性潜力

Green Synthesis and Characterization of Silver Nanoparticles Using : Antimicrobial and Cytotoxic Potential.

作者信息

Keskin Cumali, Aslan Seyhan, Baran Mehmet Fırat, Baran Ayşe, Eftekhari Aziz, Adıcan Mehmet Tevfik, Ahmadian Elham, Arslan Sevki, Mohamed Ali Jimale

机构信息

Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkiye.

Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, 47200, Turkiye.

出版信息

Int J Nanomedicine. 2025 Apr 12;20:4481-4502. doi: 10.2147/IJN.S511217. eCollection 2025.


DOI:10.2147/IJN.S511217
PMID:40242607
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12002332/
Abstract

OBJECTIVE: L. () is a herbaceous traditional medicinal plant used in the treatment of some diseases. The presence of its medicinal properties suggested that (AO) leaf extract could be used as a coating agent for the environmentally friendly production of silver nanoparticles (AgNPs). METHODS: The synthesized biogenic silver nanoparticles (AO-AgNPs) were characterized using different techniques. The antimicrobial activity of AgNPs against common bacterial pathogenic strains was determined by the minimum inhibitory concentration (MIC) method. The presence of phytochemicals was determined by LSMS/MS. The MTT assay was used to investigate AO-AgNPs' cytotoxic activity in malignant (LnCap, Caco2, MDA-MB2, A549) and healthy (HEK-293) cell lines. RESULTS: LC-MS/MS analysis detected the presence of rich phytochemicals that may be responsible for reduction reactions. Biogenic AO-AgNPs exhibited effective inhibition of the growth of pathogenic microorganisms at low concentrations. The most effective antimicrobial activity was measured as 0.5 µg/mL MIC against , and . Moreover, AO-AgNPs showed significant inhibition on the growth of cancerous cell lines, especially at a concentration of 25 μg/mL. On the contrary, it was determined that the inhibition rate decreased in the growth of healthy cell lines due to the increase in concentration. The lowest EC values were determined as 15.15 µg/mL in A549 cells. CONCLUSION: The obtained results showed that AO could be an important source for the synthesis of AgNPs. Especially their ability to inhibit the growth of antibiotic-resistant pathogenic bacteria at low concentrations compared to common antibiotics indicates that AO-AgNPs can be used as biomedical agents in various areas. Moreover, their suppressive effect on cancerous cell lines showed that they have the potential to be used as an anticancer agent, but due to their proliferative effect on healthy cell lines, care should be taken in determining the appropriate dose.

摘要

目的:某植物是一种用于治疗某些疾病的草本传统药用植物。其药用特性表明该植物叶提取物可用作环境友好型合成银纳米颗粒(AgNPs)的包覆剂。 方法:采用不同技术对合成的生物源银纳米颗粒(AO-AgNPs)进行表征。通过最低抑菌浓度(MIC)法测定AgNPs对常见细菌致病菌株的抗菌活性。通过液相色谱-串联质谱(LSMS/MS)测定植物化学物质的存在情况。采用MTT法研究AO-AgNPs对恶性(LnCap、Caco2、MDA-MB2、A549)和健康(HEK-293)细胞系的细胞毒性活性。 结果:LC-MS/MS分析检测到可能负责还原反应的丰富植物化学物质的存在。生物源AO-AgNPs在低浓度下对致病微生物的生长表现出有效抑制。对某菌和另一菌的最有效抗菌活性测定为MIC为0.5μg/mL。此外,AO-AgNPs对癌细胞系的生长表现出显著抑制,尤其是在25μg/mL的浓度下。相反,随着浓度增加,健康细胞系的生长抑制率下降。在A549细胞中,最低半数效应浓度(EC)值测定为15.15μg/mL。 结论:所得结果表明该植物可能是合成AgNPs的重要来源。特别是与普通抗生素相比,它们在低浓度下抑制耐抗生素致病细菌生长的能力表明AO-AgNPs可在各个领域用作生物医学制剂。此外,它们对癌细胞系的抑制作用表明它们有潜力用作抗癌剂,但由于它们对健康细胞系的增殖作用,在确定合适剂量时应谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/2b7f0a393eb9/IJN-20-4481-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/a242ebdf3611/IJN-20-4481-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/1390bd2f7992/IJN-20-4481-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/1c2703c47d57/IJN-20-4481-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/809f10c7ec7a/IJN-20-4481-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/559534e4d6f9/IJN-20-4481-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/edca9534429c/IJN-20-4481-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/8124b3833849/IJN-20-4481-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/845623c42d30/IJN-20-4481-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/93eada8cad17/IJN-20-4481-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/026905a93ddf/IJN-20-4481-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/4c49b7ecf30a/IJN-20-4481-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/2b7f0a393eb9/IJN-20-4481-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/a242ebdf3611/IJN-20-4481-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/1390bd2f7992/IJN-20-4481-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/1c2703c47d57/IJN-20-4481-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/809f10c7ec7a/IJN-20-4481-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/559534e4d6f9/IJN-20-4481-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/edca9534429c/IJN-20-4481-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/8124b3833849/IJN-20-4481-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/845623c42d30/IJN-20-4481-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/93eada8cad17/IJN-20-4481-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/026905a93ddf/IJN-20-4481-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/4c49b7ecf30a/IJN-20-4481-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12002332/2b7f0a393eb9/IJN-20-4481-g0012.jpg

相似文献

[1]
Green Synthesis and Characterization of Silver Nanoparticles Using : Antimicrobial and Cytotoxic Potential.

Int J Nanomedicine. 2025-4-12

[2]
Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain.

World J Microbiol Biotechnol. 2018-1-5

[3]
Silver Nanoparticles Prepared Using Magnolia officinalis Are an Effective Antimicrobial Agent on Candida albicans, Escherichia coli, and Staphylococcus aureus.

Probiotics Antimicrob Proteins. 2025-4

[4]
Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics.

J Appl Microbiol. 2018-3-23

[5]
Cytotoxic and Antimicrobial Efficacy of Silver Nanoparticles Synthesized Using a Traditional Phytoproduct, Asafoetida Gum.

Int J Nanomedicine. 2020-6-19

[6]
Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.

Artif Cells Nanomed Biotechnol. 2017-8-8

[7]
Green Synthesis of Dracocephalum kotschyi-Coated Silver Nanoparticles: Antimicrobial, Antioxidant, and Anticancer Potentials.

Med Sci Monit. 2024-10-3

[8]
Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera.

Mater Sci Eng C Mater Biol Appl. 2018-4-4

[9]
Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens.

Curr Pharm Biotechnol. 2024

[10]
Synthesis of silver nanoparticles using leaf extract and evaluation of their antimicrobial, antioxidant, cytotoxic and genotoxic potential (4-in-1 system).

Artif Cells Nanomed Biotechnol. 2021-12

引用本文的文献

[1]
Larvicidal efficacy of silk sericin-capped silver nano bioinsecticides (SS-AgNBIs) against Aedes aegypti.

Sci Rep. 2025-8-4

[2]
Green Synthesis of Silver Nanoparticles Using Plant Extracts: A Comprehensive Review of Physicochemical Properties and Multifunctional Applications.

Int J Mol Sci. 2025-6-27

本文引用的文献

[1]
Direct, Broad-Spectrum Antimicrobial Activity of Ag-Doped Hydroxyapatite against Fastidious Anaerobic Periodontal and Aerobic Dental Bacteria.

Materials (Basel). 2024-9-24

[2]
Suppression of Root Rot Fungal Diseases in Common Beans ( L.) through the Application of Biologically Synthesized Silver Nanoparticles.

Nanomaterials (Basel). 2024-4-18

[3]
Biological Synthesis of Silver Nanoparticles from Lavandula mairei Humbert: Antibacterial and Antioxidant Activities.

Curr Microbiol. 2024-4-22

[4]
Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles.

Pharmaceuticals (Basel). 2023-10-4

[5]
Recent Trends in Biologically Synthesized Metal Nanoparticles and their Biomedical Applications: a Review.

Biol Trace Elem Res. 2024-7

[6]
Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles Using Plant Extracts and Their Antimicrobial and Anticancer Applications.

Nanomaterials (Basel). 2023-9-22

[7]
Biomedical Applications of Biosynthesized Nickel Oxide Nanoparticles.

Int J Nanomedicine. 2023

[8]
Antibacterial and Antibiofilm Activity of -Mediated Calcium Oxide (CaONPs) Phyto-Nanoparticles.

Molecules. 2023-7-20

[9]
Green synthesis of silver nanoparticles mediated L. (Persimmon): determination of chemical composition and evaluation of their antimicrobials and anticancer activities.

Front Chem. 2023-5-30

[10]
Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia inermis Against Common Pathogens from Urinary Tract Infection.

Appl Biochem Biotechnol. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索