文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Advancements in Lithography Techniques and Emerging Molecular Strategies for Nanostructure Fabrication.

作者信息

Basu Prithvi, Verma Jyoti, Abhinav Vishnuram, Ratnesh Ratneshwar Kumar, Singla Yogesh Kumar, Kumar Vibhor

机构信息

Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA.

Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.

出版信息

Int J Mol Sci. 2025 Mar 26;26(7):3027. doi: 10.3390/ijms26073027.


DOI:10.3390/ijms26073027
PMID:40243625
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11988993/
Abstract

Lithography is crucial to semiconductor manufacturing, enabling the production of smaller, more powerful electronic devices. This review explores the evolution, principles, and advancements of key lithography techniques, including extreme ultraviolet (EUV) lithography, electron beam lithography (EBL), X-ray lithography (XRL), ion beam lithography (IBL), and nanoimprint lithography (NIL). Each method is analyzed based on its working principles, resolution, resist materials, and applications. EUV lithography, with sub-10 nm resolution, is vital for extending Moore's Law, leveraging high-NA optics and chemically amplified resists. EBL and IBL enable high-precision maskless patterning for prototyping but suffer from low throughput. XRL, using synchrotron radiation, achieves deep, high-resolution features, while NIL provides a cost-effective, high-throughput method for replicating nanostructures. Alignment marks play a key role in precise layer-to-layer registration, with innovations enhancing accuracy in advanced systems. The mask fabrication process is also examined, highlighting materials like molybdenum silicide for EUV and defect mitigation strategies such as automated inspection and repair. Despite challenges in resolution, defect control, and material innovation, lithography remains indispensable in semiconductor scaling, supporting applications in integrated circuits, photonics, and MEMS/NEMS devices. Various molecular strategies, mechanisms, and molecular dynamic simulations to overcome the fundamental lithographic limits are also highlighted in detail. This review offers insights into lithography's present and future, aiding researchers in nanoscale manufacturing advancements.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/73730240dd17/ijms-26-03027-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/6cd85edc8cc2/ijms-26-03027-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/70b3b8ff3bd3/ijms-26-03027-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/114820d1b2a5/ijms-26-03027-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/9144ec52cd47/ijms-26-03027-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/9023b9862e58/ijms-26-03027-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/6b189b4f1494/ijms-26-03027-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/7c4dfa86dcbf/ijms-26-03027-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/aecce569b7f1/ijms-26-03027-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/60ae14c5338d/ijms-26-03027-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/b8fa6c3ba150/ijms-26-03027-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/c3f28a0185b3/ijms-26-03027-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/f69647104b00/ijms-26-03027-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/1cd55e2c8cff/ijms-26-03027-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/e79db1303d29/ijms-26-03027-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/7a2f5906759d/ijms-26-03027-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/c69a7dd535bf/ijms-26-03027-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/538e3fd39c42/ijms-26-03027-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/ffe5c18232b4/ijms-26-03027-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/4540d91727be/ijms-26-03027-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/a8e18426f74e/ijms-26-03027-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/d1587d98c7a8/ijms-26-03027-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/436120e46623/ijms-26-03027-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/73730240dd17/ijms-26-03027-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/6cd85edc8cc2/ijms-26-03027-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/70b3b8ff3bd3/ijms-26-03027-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/114820d1b2a5/ijms-26-03027-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/9144ec52cd47/ijms-26-03027-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/9023b9862e58/ijms-26-03027-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/6b189b4f1494/ijms-26-03027-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/7c4dfa86dcbf/ijms-26-03027-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/aecce569b7f1/ijms-26-03027-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/60ae14c5338d/ijms-26-03027-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/b8fa6c3ba150/ijms-26-03027-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/c3f28a0185b3/ijms-26-03027-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/f69647104b00/ijms-26-03027-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/1cd55e2c8cff/ijms-26-03027-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/e79db1303d29/ijms-26-03027-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/7a2f5906759d/ijms-26-03027-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/c69a7dd535bf/ijms-26-03027-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/538e3fd39c42/ijms-26-03027-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/ffe5c18232b4/ijms-26-03027-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/4540d91727be/ijms-26-03027-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/a8e18426f74e/ijms-26-03027-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/d1587d98c7a8/ijms-26-03027-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/436120e46623/ijms-26-03027-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/11988993/73730240dd17/ijms-26-03027-g023.jpg

相似文献

[1]
Advancements in Lithography Techniques and Emerging Molecular Strategies for Nanostructure Fabrication.

Int J Mol Sci. 2025-3-26

[2]
Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art.

Nanotechnology. 2009-7-22

[3]
Advances in Nanoimprint Lithography.

Annu Rev Chem Biomol Eng. 2016-6-7

[4]
Evolution in Lithography Techniques: Microlithography to Nanolithography.

Nanomaterials (Basel). 2022-8-11

[5]
Extreme ultraviolet resist materials for sub-7 nm patterning.

Chem Soc Rev. 2017-8-14

[6]
Grayscale Lithography and a Brief Introduction to Other Widely Used Lithographic Methods: A State-of-the-Art Review.

Micromachines (Basel). 2024-10-30

[7]
High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography.

Beilstein J Nanotechnol. 2018-7-25

[8]
Nanoimprint lithography for nanodevice fabrication.

Nano Converg. 2016

[9]
Nanoimprint lithography for high-throughput fabrication of metasurfaces.

Front Optoelectron. 2021-6

[10]
Nanopatterns with biological functions.

J Nanosci Nanotechnol. 2006-8

引用本文的文献

[1]
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications.

Micromachines (Basel). 2025-8-13

[2]
Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology.

Micromachines (Basel). 2025-4-28

本文引用的文献

[1]
How We Simulate DNA Origami.

Small Methods. 2025-6

[2]
An Improved Algorithm to Extract Moiré Fringe Phase for Wafer-Mask Alignment in Nanoimprint Lithography.

Micromachines (Basel). 2024-11-22

[3]
Selective placement of functionalised DNA origami thermal scanning probe lithography patterning.

Mater Adv. 2024-11-4

[4]
Effect of Metal Oxide Deposition on the Sensitivity and Resolution of E-Beam Photoresist.

ACS Appl Mater Interfaces. 2024-10-1

[5]
Recent Advances in Metal-Oxide-Based Photoresists for EUV Lithography.

Micromachines (Basel). 2024-8-31

[6]
Optimization of e-beam lithography parameters for nanofabrication of sub-50 nm gold nanowires and nanogaps based on a bilayer lift-off process.

Nanotechnology. 2024-7-12

[7]
Recent Advances in Positive Photoresists: Mechanisms and Fabrication.

Materials (Basel). 2024-5-25

[8]
Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing.

Adv Mater. 2024-6

[9]
Exceptional Lithography Sensitivity Boosted by Hexafluoroisopropanols in Photoresists.

Polymers (Basel). 2024-3-15

[10]
Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications.

Discov Nano. 2023-12-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索