Man Chang, Xu Chunpeng, Wang Jinfeng, Li Xiangli, Li Tong, Ma Yanhua, Zhang Shalu, Qiao Yongfeng, Wu Qiong
School of Physical Science and Technology, Kunming University No. 2 Pu Xin Road, Economic and Technological Development Zone Kunming Yunnan Province 650214 China.
School of Chemistry and Chemical Engineering, Kunming University No. 2 Pu Xin Road, Economic and Technological Development Zone Kunming Yunnan Province 650214 China.
RSC Adv. 2025 Apr 17;15(16):12364-12371. doi: 10.1039/d4ra08382b. eCollection 2025 Apr 16.
Organic-inorganic hybrid materials have significant potential in the photocatalytic degradation of Rhodamine B (RhB). In this study, five hybrid materials were successfully synthesized by modifying silicotungstic acid (HSiWO, abbreviated SiWO) with diverse MnL [L = Salen(L), 5-Br-Salen(L), 5-Cl-Salen(L), 3-Me-Salen(L), di-Bu-Salen(L)] complexes, specifically derivatives featuring various substituents. All the compounds are characterized by IR spectra, elemental analyses and thermogravimetric analyses (TGA). The band gaps of 1.33-1.52 eV and energy bands are obtained through the measurement of UV-Vis DRS and Mott-Schottky. Photocatalytic experiments of (MnL)SiWO (compound 1), (MnL)SiWO (compound 2), (MnL)SiWO (compound 3), (MnL)SiWO (compound 4) and (MnL)SiWO (compound 5) indicate that compound 2 catalyst exhibits the best photocatalytic properties (RhB degrades to 6% during 70 min) while all of them possess catalytic activity for photodegradation of RhB under UV irradiation. Free radical trapping experiments show that the addition of PBQ (·O trapping agents) makes the RhB residual ratio increase from 6% to 60% and indicates that ·O is playing a pivotal role. A possible mechanism of RhB photodegradation in the presence of compound 2 is proposed based on free radical trapping experiments and the energy bands. Future work could focus on fine-tuning the molecular architecture through strategic modification of the organic ligands and precise control of the metal-to-POM ratio, potentially leading to optimized electronic structures and enhanced charge transfer kinetics for superior photocatalytic performance in environmental applications.
有机-无机杂化材料在光催化降解罗丹明B(RhB)方面具有巨大潜力。在本研究中,通过用不同的MnL [L = 水杨醛缩乙二胺(L)、5-溴-水杨醛缩乙二胺(L)、5-氯-水杨醛缩乙二胺(L)、3-甲基-水杨醛缩乙二胺(L)、二丁基-水杨醛缩乙二胺(L)] 配合物修饰硅钨酸(HSiWO,简称SiWO)成功合成了五种杂化材料,特别是具有各种取代基的衍生物。所有化合物均通过红外光谱、元素分析和热重分析(TGA)进行表征。通过紫外-可见漫反射光谱(UV-Vis DRS)和莫特-肖特基测量获得了1.33 - 1.52 eV的带隙和能带。对(MnL)SiWO(化合物1)、(MnL)SiWO(化合物2)、(MnL)SiWO(化合物3)、(MnL)SiWO(化合物4)和(MnL)SiWO(化合物5)进行的光催化实验表明,化合物2催化剂表现出最佳的光催化性能(在70分钟内RhB降解至6%),而它们在紫外光照射下对RhB的光降解均具有催化活性。自由基捕获实验表明,添加PBQ(·O捕获剂)使RhB残留率从6%增加到60%,表明·O起关键作用。基于自由基捕获实验和能带提出了化合物2存在下RhB光降解的可能机理。未来的工作可以集中在通过有机配体的策略性修饰和金属与多金属氧酸盐比例的精确控制来微调分子结构,这可能导致优化的电子结构和增强的电荷转移动力学,从而在环境应用中实现卓越的光催化性能。