Lee Soyeon, Lee Hyuntae, Chang Hongjun, Lim Minhong, Lee Mingyu, Koo Bonhyeop, Ryou Ko-Eun, Bak Seong-Min, Lee Hochun, Chae Sujong, Moon Janghyuk, Lee Hongkyung
Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu 03722, Seoul, Republic of Korea.
Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Daegu 42988, Republic of Korea.
ACS Nano. 2025 Apr 29;19(16):15789-15802. doi: 10.1021/acsnano.5c00027. Epub 2025 Apr 18.
The extremely fast charging (XFC) of Li-ion cells is an urgent milestone in promoting the widespread adoption of electric vehicles. However, EV-targeted cell designs with thicker electrodes compromise the XFC capability when conventional electrolytes are used, leading to hazardous Li plating and a considerable loss in Li inventory. This study presents noncarbonate solvents for superionic conductive, low-viscosity high-concentration electrolytes (HCEs). A methyl acetate (MA)-based HCE with a solid-electrolyte interphase (SEI)-stabilizing additive (3MF) was comparatively examined using a dimethyl carbonate (DMC) solvent, which has an extra oxygen atom in the molecule, across all aspects, including solvation structures, interfacial kinetics, and bulk Li transport. The 3MF electrolyte demonstrated outstanding XFC performance in a pouch cell (1.2 Ah) format and outperformed DMC-based HCE, showcasing improved cycling performance at low temperatures (-20 °C), 10 C-rate (6-min charging), and with a thick electrode (6.0 mAh cm). By satisfying the energy barrier thresholds for Li desolvation and Li migration across the SEI, MA can guide smaller solvation clusters and serve as a molecular lubricant along the Li percolation pathway in the HCE framework, which is crucial for boosting XFC capabilities.
锂离子电池的极快速充电(XFC)是推动电动汽车广泛应用的一个紧迫的里程碑。然而,当使用传统电解质时,具有较厚电极的针对电动汽车的电池设计会损害XFC能力,导致危险的锂金属沉积和锂储量的大量损失。本研究提出了用于超离子导电、低粘度高浓度电解质(HCEs)的非碳酸盐溶剂。使用分子中具有额外氧原子的碳酸二甲酯(DMC)溶剂,对一种含有固体电解质界面(SEI)稳定添加剂(3MF)的基于乙酸甲酯(MA)的HCE在包括溶剂化结构、界面动力学和体相锂传输等所有方面进行了比较研究。3MF电解质在软包电池(1.2 Ah)形式中表现出出色的XFC性能,优于基于DMC的HCE,在低温(-20°C)、10 C倍率(6分钟充电)以及使用厚电极(6.0 mAh cm)时展示出改善的循环性能。通过满足锂去溶剂化和锂在SEI上迁移的能垒阈值,MA可以引导较小的溶剂化簇,并在HCE框架中沿锂渗透路径充当分子润滑剂,这对于提高XFC能力至关重要。