Suppr超能文献

评估跨学科研究:主题与知识库的不同结果。

Evaluating interdisciplinary research: Disparate outcomes for topic and knowledge base.

作者信息

Xiang Sidney, Romero Daniel M, Teplitskiy Misha

机构信息

University of Michigan School of Information, Ann Arbor, MI 48109.

Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109.

出版信息

Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2409752122. doi: 10.1073/pnas.2409752122. Epub 2025 Apr 18.

Abstract

Interdisciplinary research is essential for addressing complex global challenges, but there are concerns that scientific institutions like journals select against it. Prior work has focused largely on how interdisciplinarity relates to outcomes for published papers, but which papers get accepted for publication in the first place is unclear. Furthermore, journals may evaluate two key dimensions of interdisciplinarity,-topic and knowledge base,-differently. Topic interdisciplinarity (measured through title and abstract) may incur evaluation penalties by cutting across disciplinary evaluation standards and threatening symbolic boundaries, while knowledge-base interdisciplinarity (measured through references) may incur benefits by combining a large pool of nonredundant information. Evaluations may also depend on how well these dimensions align with each other and the intended audience. We test these arguments using data on 128,950 submissions to 62 journals across STEM disciplines, including both accepted and rejected manuscripts. We find that a 1SD increase in knowledge-base interdisciplinarity is associated with a 0.9 percentage-point higher acceptance probability, while a 1SD increase in topic interdisciplinarity corresponds to a 1.2 percentage-point lower acceptance probability. However, the penalty for high topic-interdisciplinarity diminishes when knowledge-base interdisciplinarity is also high, and when submitted to journals designated as "interdisciplinary." These findings challenge the narrative of a uniform bias against interdisciplinary research and highlight the importance of distinguishing between its dimensions, as well as their alignment with each other and the intended audience.

摘要

跨学科研究对于应对复杂的全球挑战至关重要,但有人担心像期刊这样的科研机构会排斥它。先前的研究主要关注跨学科性与已发表论文成果之间的关系,但哪些论文首先被接受发表尚不清楚。此外,期刊可能会以不同方式评估跨学科性的两个关键维度——主题和知识基础。主题跨学科性(通过标题和摘要衡量)可能会因跨越学科评估标准并威胁到象征性界限而受到评估惩罚,而知识基础跨学科性(通过参考文献衡量)可能会因整合大量非冗余信息而带来益处。评估还可能取决于这些维度彼此之间以及与目标受众的契合程度。我们使用来自STEM学科62种期刊的128,950份投稿数据(包括已接受和被拒稿件)来检验这些观点。我们发现,知识基础跨学科性增加1个标准差,接受概率会提高0.9个百分点,而主题跨学科性增加1个标准差,则接受概率会降低1.2个百分点。然而,当知识基础跨学科性也很高以及投稿给指定为“跨学科”的期刊时,高主题跨学科性的惩罚会减轻。这些发现挑战了对跨学科研究存在统一偏见的说法,并强调了区分其维度以及它们彼此之间和与目标受众契合程度的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c66e/12037057/c94c11dccbe3/pnas.2409752122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验