Suppr超能文献

来自人羊水诱导多能干细胞的脊髓类器官概括了胎儿神经管形态发生过程中细胞表型的多样性。

Spinal Cord Organoids from Human Amniotic Fluid iPSC Recapitulate the Diversity of Cell Phenotypes During Fetal Neural Tube Morphogenesis.

作者信息

Biancotti Juan C, Moore Hannah E, Sescleifer Anne M, Sferra Shelby R, Penikis Annalise B, Miller Jena L, Kunisaki Shaun M

机构信息

Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA.

Center for Fetal Therapy, Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA.

出版信息

Mol Neurobiol. 2025 Apr 20. doi: 10.1007/s12035-025-04944-z.

Abstract

Myelomeningocele (MMC) is a severe form of spina bifida associated with substantial neurologic morbidity. In vitro modeling systems of human spinal cord development may help to elucidate the underlying pathophysiology of the MMC spinal cord. To that end, we developed spinal cord organoids (SCO), defined as self-organized, three-dimensional clusters of spinal tissue, that were derived from human amniotic fluid-induced pluripotent stem cells. Here, we used a variety of analyses, including immunofluorescent and single-cell transcriptomic approaches, to characterize SCOs from healthy and MMC fetuses. Organoids contained a diverse range of neural and mesodermal phenotypes when cultured for up to 130 days in vitro. Multielectrode arrays revealed functional activity with evidence of emerging neuronal networks. Fetal spina bifida environment modeling was successfully established by culturing SCOs in second- and third-trimester amniotic fluid for 3 weeks. Taken together, we show that functional SCOs can recapitulate the cellular identity of the fetal spinal cord and represent a novel research platform to study the interplay between cellular, biochemical, and mechanical cues during human MMC neural tube morphogenesis.

摘要

脊髓脊膜膨出(MMC)是脊柱裂的一种严重形式,伴有严重的神经功能障碍。人类脊髓发育的体外建模系统可能有助于阐明MMC脊髓潜在的病理生理学机制。为此,我们开发了脊髓类器官(SCO),其定义为源自人羊水诱导多能干细胞的自组织三维脊髓组织簇。在此,我们使用了多种分析方法,包括免疫荧光和单细胞转录组学方法,来表征来自健康胎儿和MMC胎儿的SCO。在体外培养长达130天时,类器官包含多种神经和中胚层表型。多电极阵列显示出功能活性,有新兴神经元网络的证据。通过将SCO在孕中期和晚期羊水中培养3周,成功建立了胎儿脊柱裂环境模型。综上所述,我们表明功能性SCO可以概括胎儿脊髓的细胞特性,并代表了一个新的研究平台,用于研究人类MMC神经管形态发生过程中细胞、生化和机械信号之间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验