Xu Zhilu, Sun Xiaokang, Hui Wei, Wang Qi, Xu Ping, Tang Weijian, Hu Hanlin, Song Lin, Xu Xiaopeng, Wu Yihui, Peng Qiang
School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P.R. China.
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, P.R. China.
Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202503008. doi: 10.1002/anie.202503008. Epub 2025 Apr 30.
Nonideal interfacial contact and non-radiative voltage loss in self-assembled monolayers (SAMs)-based inverted perovskite solar cells (PSCs) limit their further development. Herein, two carbazole-based molecules with different halogen atoms (X-OCZ, X = Cl or Br) are developed as efficient interfacial regulators. The halogen effect not only finely modulates the molecular packing, crystallinity, and surface contact potential of the MeO-2PACz analogue via self-induced intermolecular interactions but also significantly influences the subsequent crystal growth of perovskite, thus resulting in the formation of high-quality films with enhanced crystallinity, improved energy level alignment, and depressed non-radiative recombination. Importantly, the Cl-OCZ-mediated device exhibits a minimal interfacial carrier transport energy barrier of 0.10 eV and an impressive charge collection efficiency of 93.6%. Moreover, the target device (aperture area: 0.09 cm) shows an exceptional efficiency of 26.57% (certified 26.4%) along with enhanced thermal and operational stability. The strategy is also extended to large area devices, delivering efficiencies of 25.0% for a 1 cm device and 22.9% for a 12.96 cm minimodule. This study highlights the halogen role of interfacial small molecules in optimizing molecular packing and interfacial contact toward highly efficient PSCs with minimized energy loss and non-radiative recombination.
基于自组装单分子层(SAMs)的倒置钙钛矿太阳能电池(PSC)中,非理想的界面接触和非辐射电压损失限制了它们的进一步发展。在此,开发了两种含有不同卤素原子的咔唑基分子(X-OCZ,X = Cl或Br)作为有效的界面调节剂。卤素效应不仅通过自诱导分子间相互作用精细地调节了MeO-2PACz类似物的分子堆积、结晶度和表面接触电位,还显著影响了钙钛矿随后的晶体生长,从而导致形成具有增强结晶度、改善能级排列和抑制非辐射复合的高质量薄膜。重要的是,Cl-OCZ介导的器件表现出0.10 eV的最小界面载流子传输能垒和93.6%的令人印象深刻的电荷收集效率。此外,目标器件(孔径面积:0.09 cm²)显示出26.57%(认证为26.4%)的卓越效率以及增强的热稳定性和操作稳定性。该策略还扩展到大面积器件,1 cm²器件的效率为25.0%,12.96 cm²微型模块的效率为22.9%。这项研究突出了界面小分子的卤素作用,即在优化分子堆积和界面接触方面,朝着具有最小能量损失和非辐射复合的高效PSC发展。