Suppr超能文献

使用新一代人工智能方法分析肢端肥大症面部变化:AcroFace系统

Acromegaly facial changes analysis using last generation artificial intelligence methodology: the AcroFace system.

作者信息

Rashwan Hatem A, Marqués-Pamies Montserrat, Ruiz Sabina, Gil Joan, Asensio-Wandosell Diego, Martínez-Momblán María-Antonia, Vázquez Federico, Salinas Isabel, Ciriza Raquel, Jordà Mireia, Chanson Philippe, Valassi Elena, Abdelnasser Mohamed, Puig Domènec, Puig-Domingo Manel

机构信息

Department of Computer Engineering and Mathematics, University of Rovira i Virgili, Tarragona, Spain.

Endocrinology Unit, Hospital de Granollers, Granollers, Spain.

出版信息

Pituitary. 2025 Apr 21;28(3):50. doi: 10.1007/s11102-025-01515-2.

Abstract

PURPOSE

To describe the development of the AcroFace system, an AI-based system for early detection of acromegaly, based on facial photographs analysis.

METHODS

Two types of features were explored: (1) the visual/texture of a set of 2D facial images, and (2) geometric information obtained from a reconstructed 3D model from a single image. We optimized acromegaly detection by integrating SVM for geometric features and CNNs for visual features, each chosen for their strength in processing distinct data types effectively. This combination enhances overall accuracy by leveraging SVM's capability to manage structured, quantitative data and CNNs' proficiency in interpreting complex image textures, thus providing a comprehensive analysis of both geometric alignment and textural anomalies. ResNet-50, VGG-16, MobileNet, Inception V3, DensNet121 and Xception models were trained with an expert endocrinologist-based score as a ground truth.

RESULTS

ResNet-50 model as a feature extractor and Support Vector Regression (SVR) with a linear kernel showed the best performance (accuracy δ1 of 75% and δ3 of 89%), followed by the VGG-16 as a feature extractor and SVR with a linear kernel. Geometric features yield less accurate results than visual ones. The validation cohort showed the following performance: precision 0.90, accuracy 0.93, F1-Score 0.92, sensitivity 0.93 and specificity 0.93.

CONCLUSION

AcroFace system shows a good performance to discriminate acromegaly and non-acromegaly facial traits that may serve for the detection of acromegaly at an early stage as a screening procedure at a population level.

摘要

目的

描述基于面部照片分析的肢端肥大症早期检测人工智能系统AcroFace的开发情况。

方法

探索了两种类型的特征:(1)一组二维面部图像的视觉/纹理特征,以及(2)从单张图像重建的三维模型中获得的几何信息。我们通过集成用于几何特征的支持向量机(SVM)和用于视觉特征的卷积神经网络(CNN)来优化肢端肥大症检测,每种方法因其在有效处理不同数据类型方面的优势而被选用。这种组合通过利用SVM管理结构化定量数据的能力和CNN解释复杂图像纹理的能力来提高整体准确性,从而对几何对齐和纹理异常进行全面分析。使用基于内分泌专家的评分作为真值对ResNet-50、VGG-16、MobileNet、Inception V3、DensNet121和Xception模型进行训练。

结果

以ResNet-50模型作为特征提取器和线性核支持向量回归(SVR)表现最佳(准确率δ1为75%,δ3为89%),其次是以VGG-16作为特征提取器和线性核SVR。几何特征的结果不如视觉特征准确。验证队列显示出以下性能:精确率0.90、准确率0.93、F1分数0.92、灵敏度0.93和特异性0.93。

结论

AcroFace系统在区分肢端肥大症和非肢端肥大症面部特征方面表现良好,可作为人群水平的筛查程序用于肢端肥大症的早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ebe/12011943/4f7f8eba8385/11102_2025_1515_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验