Ali Mohammad Rafayet, Myers Taylor, Wagner Ellen, Ratnu Harshil, Dorsey E Ray, Hoque Ehsan
Computer Science, University of Rochester, Rochester, NY, USA.
Center for Health+Technology, University of Rochester Medical Center, Rochester, NY, USA.
NPJ Digit Med. 2021 Sep 3;4(1):129. doi: 10.1038/s41746-021-00502-8.
A prevalent symptom of Parkinson's disease (PD) is hypomimia - reduced facial expressions. In this paper, we present a method for diagnosing PD that utilizes the study of micro-expressions. We analyzed the facial action units (AU) from 1812 videos of 604 individuals (61 with PD and 543 without PD, with a mean age 63.9 y/o, sd. 7.8) collected online through a web-based tool ( www.parktest.net ). In these videos, participants were asked to make three facial expressions (a smiling, disgusted, and surprised face) followed by a neutral face. Using techniques from computer vision and machine learning, we objectively measured the variance of the facial muscle movements and used it to distinguish between individuals with and without PD. The prediction accuracy using the facial micro-expressions was comparable to methodologies that utilize motor symptoms. Logistic regression analysis revealed that participants with PD had less variance in AU6 (cheek raiser), AU12 (lip corner puller), and AU4 (brow lowerer) than non-PD individuals. An automated classifier using Support Vector Machine was trained on the variances and achieved 95.6% accuracy. Using facial expressions as a future digital biomarker for PD could be potentially transformative for patients in need of remote diagnoses due to physical separation (e.g., due to COVID) or immobility.
帕金森病(PD)的一个常见症状是面部表情减少——表情淡漠。在本文中,我们提出了一种利用微表情研究来诊断帕金森病的方法。我们分析了通过基于网络的工具(www.parktest.net)在线收集的604名个体(61名帕金森病患者和543名非帕金森病患者,平均年龄63.9岁,标准差7.8)的1812个视频中的面部动作单元(AU)。在这些视频中,参与者被要求做出三种面部表情(微笑、厌恶和惊讶的表情),然后是中性表情。我们使用计算机视觉和机器学习技术客观地测量了面部肌肉运动的方差,并用它来区分帕金森病患者和非帕金森病患者。使用面部微表情的预测准确率与利用运动症状的方法相当。逻辑回归分析显示,帕金森病患者在AU6(提颊肌)、AU12(拉口角肌)和AU4(降眉肌)方面的方差低于非帕金森病个体。使用支持向量机的自动分类器根据这些方差进行训练,准确率达到了95.6%。对于因身体隔离(如因新冠疫情)或行动不便而需要远程诊断的患者,将面部表情作为帕金森病未来的数字生物标志物可能具有潜在的变革性。