Suppr超能文献

用于估计平均治疗效果的双机器学习方法:一项比较研究。

Double machine learning methods for estimating average treatment effects: a comparative study.

作者信息

Tan Xiaoqing, Yang Shu, Ye Wenyu, Faries Douglas E, Lipkovich Ilya, Kadziola Zbigniew

机构信息

Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Statistics, North Carolina State University, Raleigh, NC, USA.

出版信息

J Biopharm Stat. 2025 Apr 21:1-20. doi: 10.1080/10543406.2025.2489281.

Abstract

Observational cohort studies are increasingly being used for comparative effectiveness research to assess the safety of therapeutics. Recently, various doubly robust methods have been proposed for average treatment effect estimation by combining the treatment model and the outcome model via different vehicles, such as matching, weighting, and regression. The key advantage of doubly robust estimators is that they require either the treatment model or the outcome model to be correctly specified to obtain a consistent estimator of average treatment effects, and therefore lead to a more accurate and often more precise inference. However, little work has been done to understand how doubly robust estimators differ due to their unique strategies of using the treatment and outcome models and how machine learning techniques can be combined to boost their performance, which we call double machine learning estimators. Here, we examine multiple popular doubly robust methods and compare their performance using different treatment and outcome modeling via extensive simulations and a real-world application. We found that incorporating machine learning with doubly robust estimators such as the targeted maximum likelihood estimator gives the best overall performance. Practical guidance on how to apply doubly robust estimators is provided.

摘要

观察性队列研究越来越多地被用于比较效果研究,以评估治疗方法的安全性。最近,人们提出了各种双稳健方法,通过匹配、加权和回归等不同手段,将治疗模型和结果模型结合起来,以估计平均治疗效果。双稳健估计量的关键优势在于,为了获得平均治疗效果的一致估计量,它们只需要正确设定治疗模型或结果模型,因此能得出更准确且往往更精确的推断。然而,对于双稳健估计量因其使用治疗模型和结果模型的独特策略而产生的差异,以及如何结合机器学习技术来提升其性能(即我们所称的双机器学习估计量),人们却鲜有研究。在此,我们考察了多种常用的双稳健方法,并通过广泛的模拟和实际应用,比较它们在不同治疗和结果建模方式下的性能。我们发现,将机器学习与双稳健估计量(如靶向最大似然估计量)相结合能带来最佳的整体性能。本文还提供了关于如何应用双稳健估计量的实用指南。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验