Suppr超能文献

结构化噪声香槟:一种用于具有结构化噪声的电磁脑成像的经验贝叶斯算法。

Structured noise champagne: an empirical Bayesian algorithm for electromagnetic brain imaging with structured noise.

作者信息

Ghosh Sanjay, Cai Chang, Hashemi Ali, Gao Yijing, Haufe Stefan, Sekihara Kensuke, Raj Ashish, Nagarajan Srikantan S

机构信息

Biomagetic Imaging Laboratory, University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA, United States.

Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.

出版信息

Front Hum Neurosci. 2025 Apr 7;19:1386275. doi: 10.3389/fnhum.2025.1386275. eCollection 2025.

Abstract

INTRODUCTION

Electromagnetic brain imaging is the reconstruction of brain activity from non-invasive recordings of electroencephalography (EEG), magnetoencephalography (MEG), and also from invasive ones such as the intracranial recording of electrocorticography (ECoG), intracranial electroencephalography (iEEG), and stereo electroencephalography EEG (sEEG). These modalities are widely used techniques to study the function of the human brain. Efficient reconstruction of electrophysiological activity of neurons in the brain from EEG/MEG measurements is important for neuroscience research and clinical applications. An enduring challenge in this field is the accurate inference of brain signals of interest while accounting for all sources of noise that contribute to the sensor measurements. The statistical characteristic of the noise plays a crucial role in the success of the brain source recovery process, which can be formulated as a sparse regression problem.

METHOD

In this study, we assume that the dominant environment and biological sources of noise that have high spatial correlations in the sensors can be expressed as a structured noise model based on the variational Bayesian factor analysis. To the best of our knowledge, no existing algorithm has addressed the brain source estimation problem with such structured noise. We propose to apply a robust empirical Bayesian framework for iteratively estimating the brain source activity and the statistics of the structured noise. In particular, we perform inference of the variational Bayesian factor analysis (VBFA) noise model iteratively in conjunction with source reconstruction.

RESULTS

To demonstrate the effectiveness of the proposed algorithm, we perform experiments on both simulated and real datasets. Our algorithm achieves superior performance as compared to several existing benchmark algorithms.

DISCUSSION

A key aspect of our algorithm is that we do not require any additional baseline measurements to estimate the noise covariance from the sensor data under scenarios such as resting state analysis, and other use cases wherein a noise or artifactual source occurs only in the active period but not in the baseline period (e.g., neuro-modulatory stimulation artifacts and speech movements).

摘要

引言

电磁脑成像技术是通过脑电图(EEG)、脑磁图(MEG)的非侵入性记录,以及诸如皮层脑电图(ECoG)、颅内脑电图(iEEG)和立体脑电图(sEEG)等侵入性记录来重建脑活动。这些方法是研究人类大脑功能的广泛应用技术。从脑电图/脑磁图测量中高效重建大脑中神经元的电生理活动对于神经科学研究和临床应用至关重要。该领域长期存在的一个挑战是在考虑所有导致传感器测量噪声源的同时,准确推断感兴趣的脑信号。噪声的统计特性在脑源恢复过程的成功中起着关键作用,这一过程可被表述为一个稀疏回归问题。

方法

在本研究中,我们假设传感器中具有高空间相关性的主要环境和生物噪声源可以基于变分贝叶斯因子分析表示为结构化噪声模型。据我们所知,现有的算法都没有解决具有这种结构化噪声的脑源估计问题。我们提出应用一种稳健的经验贝叶斯框架来迭代估计脑源活动和结构化噪声的统计量。具体而言,我们在源重建的同时迭代执行变分贝叶斯因子分析(VBFA)噪声模型的推断。

结果

为了证明所提算法的有效性,我们在模拟数据集和真实数据集上都进行了实验。与几种现有的基准算法相比,我们的算法表现出卓越的性能。

讨论

我们算法的一个关键方面是,在诸如静息态分析以及其他噪声或伪迹源仅出现在活动期而不出现在基线期的情况下(例如神经调节刺激伪迹和言语运动),我们不需要任何额外的基线测量来从传感器数据估计噪声协方差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5884/12010352/975bd8526d99/fnhum-19-1386275-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验