The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China.
The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China; Department of Informatics, University of Pinar del Rio Hermanos Saiz Montes de Oca, Cuba.
Neuroimage. 2023 Jun;273:120091. doi: 10.1016/j.neuroimage.2023.120091. Epub 2023 Apr 13.
Precise individualized EEG source localization is predicated on having accurate subject-specific Lead Fields (LFs) obtained from their Magnetic Resonance Images (MRI). LF calculation is a complex process involving several error-prone steps that start with obtaining a realistic head model from the MRI and finalizing with computationally expensive solvers such as the Boundary Element Method (BEM) or Finite Element Method (FEM). Current Big-Data applications require the calculation of batches of hundreds or thousands of LFs. LF. Quality Control is conventionally checked subjectively by experts, a procedure not feasible in practice for larger batches. To facilitate this step, we introduce the Lead Field Automatic-Quality Control Index (LF-AQI) that flags LF with potential errors. We base our LF-AQI on the assumption that LFs obtained from simpler head models, i.e., the homogeneous head model LF (HHM-LF) or spherical head model LF (SHM-LF), deviate only moderately from a "good" realistic test LF. Since these simpler LFs are easier to compute and check for errors, they may serve as "reference LF" to detect anomalous realistic test LF. We investigated this assumption by comparing correlation-based channel ρ(ref,test)and source τ(ref,test) similarity indices (SI) between "gold standards," i.e., very accurate FEM and BEM LFs, and the proposed references (HHM-LF and SHM-LF). Surprisingly we found that the most uncomplicated possible reference, HHM-LF had high SI values with the gold standards-leading us to explore further use of the channel ρ(HHM-LF,test)and source τ(HHM-LF,test) our LF-AQI. Indeed, these SI successfully detected five simulated scenarios of LFs artifacts. This result encouraged us to evaluate the SI on a large dataset and thus define our LF-AQI. We thus computed the SI of 1251 LFs obtained from the Child Mind Institute (CMI) MRI dataset. When ρ(HHM-LF,test)and source τ(HHM-LF,test) were plotted for all test subjects on a 2D space, most were tightly clustered around the median of a high similarity centroid (HSC), except for a smaller proportion of outliers. We define the LF-AQI for a given LF as the log Euclidean distance between its SI and the HSC median. To automatically detect outliers, the threshold is at the 90th percentile of the CMI LF-AQIs (-0.9755). LF-AQI greater than this threshold flag individual LF to be checked. The robustness of this LF-AQI screening was checked by repeated out-of-sample validation. Strikingly, minor corrections in re-processing the flagged cases eliminated their status as outliers. Furthermore, the "doubtful" labels assigned by LF-AQI were validated by neuroscience students using a Likert scale questionnaire designed to manually check the LF's quality. Item Response Theory (IRT) analysis was applied to the questionnaire results to compute an optimized model and a latent variable θ for that model. A linear mixed model (LMM) between the θ and LF-AQI resulted in an effect with a Cohen's d value of 1.3 and a p-value <0.001, thus validating the correspondence of LF-AQI with the visual quality control. We provide an open-source pipeline to implement both LF calculation and its quality control to allow further evaluation of our index.
精确的个体化脑电图源定位取决于从其磁共振图像 (MRI) 中获得准确的个体特定导联场 (LFs)。LF 计算是一个复杂的过程,涉及几个容易出错的步骤,从从 MRI 中获得现实的头部模型开始,最终使用计算成本高昂的求解器(如边界元法 (BEM) 或有限元法 (FEM))结束。当前的大数据应用需要计算数百或数千个 LFs 的批次。LF 质量控制传统上由专家进行主观检查,但对于更大的批次,实际上无法进行此操作。为了方便这一步骤,我们引入了导联场自动质量控制指数 (LF-AQI),该指数可以标记潜在错误的 LF。我们的 LF-AQI 基于这样的假设,即从更简单的头部模型(即均匀头部模型 LF (HHM-LF) 或球形头部模型 LF (SHM-LF))获得的 LF 仅适度偏离“良好”的真实测试 LF。由于这些更简单的 LF 更容易计算和检查错误,因此它们可以作为“参考 LF”来检测异常的真实测试 LF。我们通过比较“黄金标准”(即非常准确的 FEM 和 BEM LF)和提议的参考(HHM-LF 和 SHM-LF)之间的基于相关性的通道 ρ(ref,test)和源 τ(ref,test)相似性指数 (SI),对该假设进行了研究。令人惊讶的是,我们发现最简单的可能参考,HHM-LF 与黄金标准具有很高的 SI 值,这促使我们进一步探索使用通道 ρ(HHM-LF,test)和源 τ(HHM-LF,test)作为我们的 LF-AQI。事实上,这些 SI 成功检测到了五个 LF 伪影模拟场景。这一结果鼓励我们在大型数据集上评估 SI,并因此定义我们的 LF-AQI。我们因此计算了从儿童思维研究所 (CMI) MRI 数据集获得的 1251 个 LF 的 SI。当将 ρ(HHM-LF,test)和源 τ(HHM-LF,test)为所有测试对象绘制在二维空间上时,大多数对象紧密地聚集在高相似度质心 (HSC) 的中位数周围,除了一小部分异常值。我们为给定的 LF 定义 LF-AQI 为其 SI 与 HSC 中位数之间的对数欧几里得距离。为了自动检测异常值,阈值位于 CMI LF-AQI 的第 90 百分位数 (-0.9755)。大于此阈值的 LF-AQI 标志着要检查的单个 LF。通过重复样本外验证检查了 LF-AQI 筛选的稳健性。引人注目的是,对标记情况进行轻微更正可消除其异常状态。此外,LF-AQI 分配的“可疑”标签通过旨在手动检查 LF 质量的李克特量表问卷由神经科学学生进行了验证。项目反应理论 (IRT) 分析应用于问卷结果,以计算优化模型和该模型的潜在变量θ。θ 和 LF-AQI 之间的线性混合模型 (LMM) 导致具有 Cohen's d 值为 1.3 和 p 值 <0.001 的效果,从而验证了 LF-AQI 与视觉质量控制的对应关系。我们提供了一个开源管道来实现 LF 计算及其质量控制,以允许对我们的指数进行进一步评估。