Rice Brian Travis, Rasmus Stacy, Onders Robert, Thomas Timothy, Day Gretchen, Wood Jeremy, Britton Carla, Hernandez-Boussard Tina, Hiratsuka Vanessa
Department of Emergency Medicine, Stanford University, Palo Alto, CA, United States.
Center for Alaska Native Health Research, University of Alaska Fairbanks, Fairbanks, AK, United States.
Front Artif Intell. 2025 Apr 7;8:1568886. doi: 10.3389/frai.2025.1568886. eCollection 2025.
American Indian and Alaska Native (AI/AN) communities are at a critical juncture in health research, where combining participatory methods with advancements in artificial intelligence and machine learning (AI/ML) can promote equity. Community-based participatory research methods which emerged to help Alaska Native communities navigate the complicated legacy of historical research abuses provide a framework to allow emerging AI/ML technologies to align with their unique world views, community strengths, and healthcare goals. A consortium of researchers (including Alaska Native Tribal Health Consortium, the Center for Alaska Native Health Research at University of Alaska, Fairbanks, Stanford University, Southcentral Foundation, and Maniilaq Association) is using community-engaged AI/ML methods to address air medical ambulance (medevac) utilization in rural communities within the Alaska Tribal Health System (ATHS). This mixed-methods convergent triangulation study uses qualitative and quantitative analyses to develop AI/ML models tailored to community needs, provider concerns, and cultural contexts. Early successes have led to a second funded project to expand community perspectives, pilot models, and address issues of governance and ethics. Using the Ethical, Legal, and Social Implications of Research framework to address implementation of AI/ML in AI/AN communities, this second grant expands community engagement, technical capacity, and creates a body within the ATHS able to provide recommendations about AI/ML security, privacy, governance and policy. These two projects have the potential to provide equitable AI/ML implementation in Alaska Native healthcare and provide a roadmap for researchers and policy makers looking to effect similar change in other AI/AN and marginalized communities.
美国印第安人和阿拉斯加原住民(AI/AN)社区正处于健康研究的关键节点,将参与式方法与人工智能和机器学习(AI/ML)的进步相结合能够促进公平。基于社区的参与式研究方法应运而生,旨在帮助阿拉斯加原住民社区应对历史研究滥用的复杂遗留问题,它提供了一个框架,使新兴的AI/ML技术能够与他们独特的世界观、社区优势和医疗保健目标保持一致。一个研究团队(包括阿拉斯加原住民部落健康联盟、阿拉斯加大学费尔班克斯分校的阿拉斯加原住民健康研究中心、斯坦福大学、中南部基金会和马尼拉克协会)正在使用社区参与的AI/ML方法来解决阿拉斯加部落健康系统(ATHS)内农村社区的空中医疗救护(medevac)利用问题。这项混合方法的收敛性三角测量研究使用定性和定量分析来开发针对社区需求、提供者关注和文化背景的AI/ML模型。早期的成功促使开展了第二个获得资助的项目,以扩大社区视角、试点模型并解决治理和伦理问题。利用研究的伦理、法律和社会影响框架来解决AI/ML在AI/AN社区中的实施问题,这笔第二项拨款扩大了社区参与度和技术能力,并在ATHS内设立了一个机构,能够就AI/ML的安全、隐私、治理和政策提供建议。这两个项目有可能在阿拉斯加原住民医疗保健中实现公平的AI/ML实施,并为希望在其他AI/AN和边缘化社区实现类似变革的研究人员和政策制定者提供路线图。