Thangaraj Phyllis M, Oikonomou Evangelos K, Dhingra Lovedeep S, Aminorroaya Arya, Jayaram Rahul H, Suchard Marc A, Khera Rohan
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (P.M.T., E.K.O., L.S.D., A.A., R.J., R.K.).
Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles (M.A.S.).
Circ Cardiovasc Qual Outcomes. 2025 May;18(5):e011306. doi: 10.1161/CIRCOUTCOMES.124.011306. Epub 2025 Apr 22.
Assessing the generalizability of randomized clinical trials (RCTs) to real-world patients remains challenging. We propose a multidimensional metric to quantify the representativeness of an RCT cohort in an electronic health record (EHR) population and estimate real-world effects based on individualized treatment effects observed in the RCT.
We identified 65 clinical prerandomization characteristics of patients with heart failure with preserved ejection fraction within the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial) and extracted those features in similar patients in EHR data from 4 hospitals in the Yale New Haven Health System. We then assessed the real-world generalizability of TOPCAT by developing a novel statistic, the phenotypic distance metric, to quantify the representation of TOPCAT participants within EHR patients. Finally, applying a machine learning method to learn individualized treatment effect in TOPCAT participants stratified by region, the United States (US) and Eastern Europe (EE), we predicted spironolactone benefit within the EHR cohorts.
There were 3445 patients in TOPCAT (median age 69, interquartile range [IQR], 61-76 years, 52% women) and 8121 patients with heart failure with preserved ejection fraction across 4 hospitals (median age range 77, IQR, 68-86; years to 85; IQR, 77-91 years, 54% to 62% women). Across covariates, the EHR patients were more similar to each other than the TOPCAT-US participants (median standardized mean difference 0.065, IQR, 0.011-0.144 versus median standardized mean difference 0.186, IQR, 0.040-0.479). The phenotypic distance metric found a higher generalizability of the TOPCAT-US participants to the EHR patients than the TOPCAT-EE participants. Using a TOPCAT-US-derived model of individualized treatment effect, all EHR patients were predicted to derive benefit from spironolactone treatment, while a TOPCAT-EE-derived model predicted 13% of EHR patients to derive benefit.
This novel multidimensional metric evaluates the real-world representativeness of RCT participants against corresponding patients in the EHR, enabling the evaluation of an RCT's implication for real-world patients.
评估随机临床试验(RCT)对真实世界患者的可推广性仍然具有挑战性。我们提出了一种多维指标,用于量化RCT队列在电子健康记录(EHR)人群中的代表性,并根据RCT中观察到的个体化治疗效果估计真实世界的效应。
我们在TOPCAT(醛固酮拮抗剂治疗射血分数保留的心力衰竭试验)中确定了65个射血分数保留的心力衰竭患者的临床随机前特征,并从耶鲁纽黑文医疗系统的4家医院的EHR数据中提取了类似患者的这些特征。然后,我们通过开发一种新的统计量——表型距离指标,来量化TOPCAT参与者在EHR患者中的代表性,从而评估TOPCAT在真实世界中的可推广性。最后,应用机器学习方法来了解按地区分层的TOPCAT参与者(美国和东欧)的个体化治疗效果,我们预测了EHR队列中螺内酯的获益情况。
TOPCAT中有3445例患者(中位年龄69岁,四分位间距[IQR]为61 - 76岁,52%为女性),4家医院中有8121例射血分数保留的心力衰竭患者(中位年龄范围77岁,IQR为68 - 86岁;至85岁;IQR为77 - 91岁,54%至62%为女性)。在各协变量方面,EHR患者彼此之间比TOPCAT - 美国参与者更相似(中位标准化均值差异0.065,IQR为0.011 - 0.144,而中位标准化均值差异0.186,IQR为0.040 - 0.479)。表型距离指标发现,TOPCAT - 美国参与者对EHR患者的可推广性高于TOPCAT - 东欧参与者。使用源自TOPCAT - 美国的个体化治疗效果模型,预计所有EHR患者都能从螺内酯治疗中获益,而源自TOPCAT - 东欧的模型预计13%的EHR患者能获益。
这种新的多维指标评估了RCT参与者相对于EHR中相应患者在真实世界中的代表性,从而能够评估RCT对真实世界患者的影响。