Suppr超能文献

人工智能在糖尿病视网膜病变筛查中的性能:前瞻性研究的系统评价和荟萃分析。

Performance of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis of prospective studies.

机构信息

Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China.

出版信息

Front Endocrinol (Lausanne). 2023 Jun 13;14:1197783. doi: 10.3389/fendo.2023.1197783. eCollection 2023.

Abstract

AIMS

To systematically evaluate the diagnostic value of an artificial intelligence (AI) algorithm model for various types of diabetic retinopathy (DR) in prospective studies over the previous five years, and to explore the factors affecting its diagnostic effectiveness.

MATERIALS AND METHODS

A search was conducted in Cochrane Library, Embase, Web of Science, PubMed, and IEEE databases to collect prospective studies on AI models for the diagnosis of DR from January 2017 to December 2022. We used QUADAS-2 to evaluate the risk of bias in the included studies. Meta-analysis was performed using MetaDiSc and STATA 14.0 software to calculate the combined sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of various types of DR. Diagnostic odds ratios, summary receiver operating characteristic (SROC) plots, coupled forest plots, and subgroup analysis were performed according to the DR categories, patient source, region of study, and quality of literature, image, and algorithm.

RESULTS

Finally, 21 studies were included. Meta-analysis showed that the pooled sensitivity, specificity, pooled positive likelihood ratio, pooled negative likelihood ratio, area under the curve, Cochrane Q index, and pooled diagnostic odds ratio of AI model for the diagnosis of DR were 0.880 (0.875-0.884), 0.912 (0.99-0.913), 13.021 (10.738-15.789), 0.083 (0.061-0.112), 0.9798, 0.9388, and 206.80 (124.82-342.63), respectively. The DR categories, patient source, region of study, sample size, quality of literature, image, and algorithm may affect the diagnostic efficiency of AI for DR.

CONCLUSION

AI model has a clear diagnostic value for DR, but it is influenced by many factors that deserve further study.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/prospero/, identifier CRD42023389687.

摘要

目的

系统评估过去五年内前瞻性研究中用于各种类型糖尿病视网膜病变(DR)的人工智能(AI)算法模型的诊断价值,并探讨影响其诊断效果的因素。

材料与方法

在 Cochrane Library、Embase、Web of Science、PubMed 和 IEEE 数据库中进行检索,收集 2017 年 1 月至 2022 年 12 月期间用于 DR 诊断的 AI 模型的前瞻性研究。使用 QUADAS-2 评估纳入研究的偏倚风险。使用 MetaDiSc 和 STATA 14.0 软件进行 Meta 分析,计算各种类型 DR 的合并敏感性、特异性、阳性似然比和阴性似然比。根据 DR 类别、患者来源、研究区域以及文献、图像和算法质量,进行诊断比值比、汇总受试者工作特征(SROC)曲线、联合森林图和亚组分析。

结果

最终纳入 21 项研究。Meta 分析显示,AI 模型用于诊断 DR 的合并敏感性、特异性、合并阳性似然比、合并阴性似然比、曲线下面积、Cochrane Q 指数和合并诊断比值比分别为 0.880(0.875-0.884)、0.912(0.99-0.913)、13.021(10.738-15.789)、0.083(0.061-0.112)、0.9798、0.9388 和 206.80(124.82-342.63)。DR 类别、患者来源、研究区域、样本量、文献质量、图像和算法可能影响 AI 对 DR 的诊断效能。

结论

AI 模型对 DR 具有明确的诊断价值,但受许多因素影响,值得进一步研究。

系统评价注册

https://www.crd.york.ac.uk/prospero/,标识符 CRD42023389687。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7749/10296189/9317a6a93bd0/fendo-14-1197783-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验