Wang Wuling, Qi Xuan, He Yongsheng, Yang Hongkai, Qi Dong, Tang Zhen, Chen Qiong
Department of Radiology, Ma'anshan People's Hospital, Maanshan, 243000, China.
Ma'anshan Key Laboratory for Medical Image Modeling and Intelligent Analysis, Maanshan, 243099, China.
Curr Med Imaging. 2025 Apr 21. doi: 10.2174/0115734056385352250410053810.
Objective The global incidence of lung cancer highlights the need for improved assessment of nodule characteristics to enhance early detection of lung adenocarcinoma presenting as ground-glass nodules (GGNs). This study investigated the applicability of radiomics features of vascular structures within GGNs for predicting invasiveness of GGNs. Methods In total, 165 pathologically confirmed pulmonary GGNs were retrospectively analyzed. The nodules were classified into preinvasive and invasive groups and randomly categorized into training and validation sets in a 7:3 ratio. Four models were constructed and evaluated: radiomics-GGN, radiomics-vascular, clinical-radiomics-GGN, and clinical-radiomics-vascular. The predictive performance of these models was assessed using receiver operating characteristic curves, decision curve analysis, calibration curves, and DeLong's test. Results Significant differences were observed between the preinvasive and invasive groups in terms of age, nodule length, average diameter, morphology, and lobulation sign (P = 0.006, 0.038, 0.046, 0.049, and 0.002, respectively). In the radiomics-GGN model, the support vector machine (SVM) approach outperformed logistic regression (LR), achieving an area under the curve (AUC) of 0.958 in the training set and 0.763 in the validation set. Similarly, in the radiomics-vascular model, the SVM approach outperformed LR. Furthermore, the clinical-radiomics-vascular model demonstrated superior predictive performance compared with the clinical-radiomics-GGN model, with an AUC of 0.918 in the training set and 0.864 in the validation set. DeLong's test indicated significant differences in predicting the invasiveness of pulmonary nodules between the clinical-radiomics-vascular model and the clinical-radiomics-GGN model, both in the training and validation sets (P < 0.01). Conclusion The radiomics models based on internal vascular structures of GGNs outperformed those based on GGNs alone, suggesting that incorporating vascular radiomics analysis can improve the noninvasive assessment of GGN invasiveness, thereby aiding in clinical decision-making and guiding biopsy selection and treatment planning.
目的 肺癌的全球发病率凸显了改进结节特征评估以提高对表现为磨玻璃结节(GGN)的肺腺癌早期检测的必要性。本研究调查了GGN内血管结构的放射组学特征对预测GGN侵袭性的适用性。方法 对165个经病理证实的肺部GGN进行回顾性分析。将结节分为浸润前组和浸润组,并按7:3的比例随机分为训练集和验证集。构建并评估了四个模型:放射组学-GGN、放射组学-血管、临床-放射组学-GGN和临床-放射组学-血管。使用受试者工作特征曲线、决策曲线分析、校准曲线和德龙检验评估这些模型的预测性能。结果 浸润前组和浸润组在年龄、结节长度、平均直径、形态和分叶征方面存在显著差异(分别为P = 0.006、0.038、0.046、0.049和0.002)。在放射组学-GGN模型中,支持向量机(SVM)方法优于逻辑回归(LR),在训练集中曲线下面积(AUC)为0.958,在验证集中为0.763。同样,在放射组学-血管模型中,SVM方法优于LR。此外,临床-放射组学-血管模型与临床-放射组学-GGN模型相比表现出更好的预测性能,在训练集中AUC为0.918,在验证集中为0.864。德龙检验表明,在训练集和验证集中,临床-放射组学-血管模型与临床-放射组学-GGN模型在预测肺结节侵袭性方面存在显著差异(P < 0.01)。结论 基于GGN内部血管结构的放射组学模型优于仅基于GGN的模型,这表明纳入血管放射组学分析可以改善对GGN侵袭性的无创评估,从而有助于临床决策并指导活检选择和治疗计划。