Cheema Baljash, Tibrewala Anjan
Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, 676 N. Saint Clair Street Arkes Pavilion, Suite 600, Chicago, IL, 60611, USA.
Feinberg School of Medicine, Northwestern University, 676 N. Saint Clair Street Arkes Pavilion, Suite 600, Chicago, IL, 60611, USA.
Heart Fail Rev. 2025 Apr 23. doi: 10.1007/s10741-025-10514-1.
While there is continued progress in developing therapies for patients with heart failure, the condition results in significant morbidity and a sizeable economic impact on our society. Recent advances in wearable sensors combined with machine learning algorithms give hope that heart failure can be better managed remotely and allow for improved clinical outcomes. This is a focused review of the key findings of the SEISMocardiogram In Cardiovascular Monitoring for Heart Failure I (SEISMIC-HF 1) study, presented at the American Heart Association's Scientific Sessions 2024 in Chicago, Illinois. This study showcased the ability of a machine learning algorithm to estimate pulmonary capillary wedge pressure in patients with heart failure with reduced ejection fraction, utilizing seismocardiography, photoplethysmography, and electrocardiography signals obtained non-invasively through a wearable sensor patch (CardioTag) for model input. The authors showed a significant correlation between model-predicted pulmonary capillary wedge pressure and the gold standard pressure measurement obtained from right heart catheterization. Future investigations should assess the implementation of this technology as a part of a treatment strategy for outpatient heart failure care and explore its performance in additional study populations including those with heart failure with preserved ejection fraction and in patients outside of the clinical environment.
尽管在为心力衰竭患者开发治疗方法方面不断取得进展,但这种疾病会导致严重的发病率,并对我们的社会造成相当大的经济影响。可穿戴传感器与机器学习算法的最新进展带来了希望,即心力衰竭可以得到更好的远程管理,并改善临床结果。这是一篇重点综述,介绍了在伊利诺伊州芝加哥举行的2024年美国心脏协会科学会议上发表的心力衰竭心血管监测中的地震心动图I(SEISMIC-HF 1)研究的主要发现。这项研究展示了一种机器学习算法利用通过可穿戴传感器贴片(CardioTag)无创获取的地震心动图、光电容积脉搏波描记图和心电图信号作为模型输入,来估计射血分数降低的心力衰竭患者肺毛细血管楔压的能力。作者表明,模型预测的肺毛细血管楔压与通过右心导管插入术获得的金标准压力测量值之间存在显著相关性。未来的研究应评估将这项技术作为门诊心力衰竭护理治疗策略的一部分的实施情况,并探索其在包括射血分数保留的心力衰竭患者以及临床环境之外的患者在内的其他研究人群中的表现。