Phelipon Romane, Lansade Lea, Razzaq Misbah
INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France.
Sci Rep. 2025 Apr 23;15(1):13154. doi: 10.1038/s41598-025-95853-7.
In this study, we explore machine learning models for predicting emotional states in ridden horses. We manually label the images to train the models in a supervised manner. We perform data exploration and use different cropping methods, mainly based on Yolo and Faster R-CNN, to create two new datasets: 1) the cropped body, and 2) the cropped head dataset. We train various convolutional neural network (CNN) models on both cropped and uncropped datasets and compare their performance in emotion prediction of ridden horses. Despite the cropped head dataset lacking important regions like the tail (commonly annotated by experts), it yields the best results with an accuracy of 87%, precision of 79%, and recall of 97%. Furthermore, we update our models using various techniques, such as transfer learning and fine-tuning, to further improve their performance. Finally, we employ three interpretation methods to analyze the internal workings of our models, finding that LIME effectively identifies features similar to those used by experts for annotation.
在本研究中,我们探索用于预测骑乘马匹情绪状态的机器学习模型。我们手动标注图像,以监督方式训练模型。我们进行数据探索,并使用不同的裁剪方法,主要基于Yolo和Faster R-CNN,创建两个新数据集:1)裁剪后的身体,以及2)裁剪后的头部数据集。我们在裁剪后的和未裁剪的数据集上训练各种卷积神经网络(CNN)模型,并比较它们在骑乘马匹情绪预测中的性能。尽管裁剪后的头部数据集缺少像尾巴这样的重要区域(专家通常会标注),但其产生了最佳结果,准确率为87%,精确率为79%,召回率为97%。此外,我们使用各种技术更新模型,如迁移学习和微调,以进一步提高其性能。最后,我们采用三种解释方法来分析模型的内部工作原理,发现LIME有效地识别出与专家用于标注的特征相似的特征。