Suppr超能文献

用电鱼算法和双线性卷积网络优化糖尿病视网膜病变检测

Optimizing diabetic retinopathy detection with electric fish algorithm and bilinear convolutional networks.

作者信息

Pamula Udayaraju, Pulipati Venkateswararao, Vijaya Suresh G, Jagannatha Reddy M V, Bondala Anil Kumar, Mantena Srihari Varma, Vatambeti Ramesh

机构信息

Department of Computer Science and Engineering, School of Engineering and Sciences, SRM University, Amaravati, AP, India.

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, India.

出版信息

Sci Rep. 2025 Apr 23;15(1):14215. doi: 10.1038/s41598-025-99228-w.

Abstract

Diabetic Retinopathy (DR) is a leading cause of vision impairment globally, necessitating regular screenings to prevent its progression to severe stages. Manual diagnosis is labor-intensive and prone to inaccuracies, highlighting the need for automated, accurate detection methods. This study proposes a novel approach for early DR detection by integrating advanced machine learning techniques. The proposed system employs a three-phase methodology: initial image preprocessing, blood vessel segmentation using a Hopfield Neural Network (HNN), and feature extraction through an Attention Mechanism-based Capsule Network (AM-CapsuleNet). The features are optimized using a Taylor-based African Vulture Optimization Algorithm (AVOA) and classified using a Bilinear Convolutional Attention Network (BCAN). To enhance classification accuracy, the system introduces a hybrid Electric Fish Optimization Arithmetic Algorithm (EFAOA), which refines the exploration phase, ensuring rapid convergence. The model was evaluated on a balanced dataset from the APTOS 2019 Blindness Detection challenge, demonstrating superior performance in terms of accuracy and efficiency. The proposed system offers a robust solution for the early detection and classification of DR, potentially improving patient outcomes through timely and precise diagnosis.

摘要

糖尿病性视网膜病变(DR)是全球视力损害的主要原因,需要定期进行筛查以防止其发展到严重阶段。人工诊断劳动强度大且容易出现不准确的情况,这凸显了对自动化、准确检测方法的需求。本研究提出了一种通过集成先进机器学习技术进行早期DR检测的新方法。所提出的系统采用三相方法:初始图像预处理、使用霍普菲尔德神经网络(HNN)进行血管分割以及通过基于注意力机制的胶囊网络(AM-CapsuleNet)进行特征提取。使用基于泰勒的非洲秃鹫优化算法(AVOA)对特征进行优化,并使用双线性卷积注意力网络(BCAN)进行分类。为了提高分类准确率,该系统引入了一种混合电鱼优化算法(EFAOA),它改进了探索阶段,确保快速收敛。该模型在来自APTOS 2019失明检测挑战赛的平衡数据集上进行了评估,在准确性和效率方面表现出卓越的性能。所提出的系统为DR的早期检测和分类提供了一个强大的解决方案,有可能通过及时和精确的诊断改善患者的治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f6/12019244/02ff335e00b3/41598_2025_99228_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验