文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

比较用于从眼底图像中检测青光眼的无代码平台和深度学习模型。

Comparing No-Code Platforms and Deep Learning Models for Glaucoma Detection From Fundus Images.

作者信息

Gobira Mauro, Nakayama Luis F, Regatieri Caio Vinicius S, Belfort Rubens

机构信息

Ophthalmology, Vision Institute - Instituto Paulista de Estudos e Pesquisas em Oftalmologia (IPEPO), São Paulo, BRA.

Ophthalmology, Universidade Federal de São Paulo (UNIFESP), São Paulo, BRA.

出版信息

Cureus. 2025 Mar 24;17(3):e81064. doi: 10.7759/cureus.81064. eCollection 2025 Mar.


DOI:10.7759/cureus.81064
PMID:40271336
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12015992/
Abstract

PURPOSE: This study compares the performance of two no-code machine learning platforms, Google's Teachable Machine (TM) (Google LLC, Mountain View, CA, USA) and Apple's Create ML (Apple Inc., Cupertino, CA, USA), alongside a traditional deep learning model, ResNet200d, in classifying optic nerve fundus images into glaucoma and non-glaucoma categories using the ACRIMA dataset. METHODS: A comparative cross-sectional analysis was conducted using 705 labeled fundus images from the ACRIMA dataset (326 glaucomatous, 239 non-glaucomatous). Models were trained separately on each platform, and a validation set comprising 70 glaucomatous and 70 non-glaucomatous images was used to assess performance. Performance metrics, such as sensitivity, specificity, F1 score, and Cohen's kappa, were assessed with 95% confidence intervals. Statistical analysis was performed using DATAtab (DATAtab e.U. Graz, Austria (https://datatab.net)). RESULTS: The ResNet200d model demonstrated the highest performance, with an accuracy of 99.29%, a sensitivity of 98.57%, a specificity of 100%, and an F1 score of 99.29%. Create ML achieved a sensitivity of 93.24%, a specificity of 98.48%, and an F1 score of 95.83%. TM exhibited a sensitivity of 95.71%, a specificity of 94.29%, and an F1 score of 95.04%. Both no-code platforms demonstrated strong performance, with Create ML excelling in specificity and TM showing higher sensitivity. CONCLUSION: While the ResNet200d model outperformed both no-code platforms in diagnostic accuracy, the no-code platforms demonstrated robust capabilities, highlighting their potential to democratize artificial intelligence (AI) in healthcare. These results highlight the potential of no-code platforms for democratizing medical image analysis, especially in resource-limited contexts. Further studies with diverse datasets are recommended to validate these results.

摘要

目的:本研究比较了两个无代码机器学习平台,即谷歌的可教机器(TM)(谷歌有限责任公司,美国加利福尼亚州山景城)和苹果的创建机器学习(苹果公司,美国加利福尼亚州库比蒂诺),与传统深度学习模型ResNet200d,在使用ACRIMA数据集将视神经眼底图像分类为青光眼和非青光眼类别方面的性能。 方法:使用来自ACRIMA数据集的705张标记眼底图像(326张青光眼图像,239张非青光眼图像)进行了一项比较横断面分析。模型在每个平台上分别进行训练,并使用包含70张青光眼图像和70张非青光眼图像的验证集来评估性能。性能指标,如敏感性、特异性、F1分数和科恩kappa系数,以95%置信区间进行评估。使用DATAtab(DATAtab e.U.,奥地利格拉茨(https://datatab.net))进行统计分析。 结果:ResNet200d模型表现出最高性能,准确率为99.29%,敏感性为98.57%,特异性为100%,F1分数为99.29%。创建机器学习的敏感性为93.24%,特异性为98.48%,F1分数为95.83%。TM的敏感性为95.71%,特异性为94.29%,F1分数为95.04%。两个无代码平台都表现出强大的性能,创建机器学习在特异性方面表现出色,而TM显示出更高的敏感性。 结论:虽然ResNet200d模型在诊断准确性方面优于两个无代码平台,但无代码平台展示了强大的能力,突出了它们在医疗保健领域使人工智能(AI)民主化的潜力。这些结果凸显了无代码平台在使医学图像分析民主化方面的潜力,特别是在资源有限的情况下。建议使用不同数据集进行进一步研究以验证这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b954/12015992/0c78026d0945/cureus-0017-00000081064-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b954/12015992/f4ebb5d5094c/cureus-0017-00000081064-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b954/12015992/e0527f7173b6/cureus-0017-00000081064-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b954/12015992/0c78026d0945/cureus-0017-00000081064-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b954/12015992/f4ebb5d5094c/cureus-0017-00000081064-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b954/12015992/e0527f7173b6/cureus-0017-00000081064-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b954/12015992/0c78026d0945/cureus-0017-00000081064-i03.jpg

相似文献

[1]
Comparing No-Code Platforms and Deep Learning Models for Glaucoma Detection From Fundus Images.

Cureus. 2025-3-24

[2]
Utilizing human intelligence in artificial intelligence for detecting glaucomatous fundus images using human-in-the-loop machine learning.

Indian J Ophthalmol. 2022-4

[3]
A generalised computer vision model for improved glaucoma screening using fundus images.

Eye (Lond). 2025-1

[4]
Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.

Graefes Arch Clin Exp Ophthalmol. 2020-4

[5]
Code-Free Deep Learning Glaucoma Detection on Color Fundus Images.

Ophthalmol Sci. 2025-1-30

[6]
Application of a deep learning system in glaucoma screening and further classification with colour fundus photographs: a case control study.

BMC Ophthalmol. 2022-12-12

[7]
Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs.

Ophthalmology. 2019-9-24

[8]
Detection of microscopic glaucoma through fundus images using deep transfer learning approach.

Microsc Res Tech. 2022-6

[9]
Glaucoma Detection and Feature Identification via GPT-4V Fundus Image Analysis.

Ophthalmol Sci. 2024-11-29

[10]
A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs.

Ophthalmol Glaucoma. 2018

本文引用的文献

[1]
Application of Artificial Intelligence in Ophthalmology: An Updated Comprehensive Review.

J Ophthalmic Vis Res. 2024-9-16

[2]
Clinical Applications of Artificial Intelligence in Glaucoma.

J Ophthalmic Vis Res. 2023-2-21

[3]
CNNs for automatic glaucoma assessment using fundus images: an extensive validation.

Biomed Eng Online. 2019-3-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索