Suppr超能文献

基于眼底图像的自动青光眼评估的卷积神经网络:广泛验证。

CNNs for automatic glaucoma assessment using fundus images: an extensive validation.

机构信息

Instituto de Investigación e Innovación en Bioingeniería, I3B, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.

Pattern Recognition Lab, University of Erlangen-Nuremberg, Erlangen, Germany.

出版信息

Biomed Eng Online. 2019 Mar 20;18(1):29. doi: 10.1186/s12938-019-0649-y.

Abstract

BACKGROUND

Most current algorithms for automatic glaucoma assessment using fundus images rely on handcrafted features based on segmentation, which are affected by the performance of the chosen segmentation method and the extracted features. Among other characteristics, convolutional neural networks (CNNs) are known because of their ability to learn highly discriminative features from raw pixel intensities.

METHODS

In this paper, we employed five different ImageNet-trained models (VGG16, VGG19, InceptionV3, ResNet50 and Xception) for automatic glaucoma assessment using fundus images. Results from an extensive validation using cross-validation and cross-testing strategies were compared with previous works in the literature.

RESULTS

Using five public databases (1707 images), an average AUC of 0.9605 with a 95% confidence interval of 95.92-97.07%, an average specificity of 0.8580 and an average sensitivity of 0.9346 were obtained after using the Xception architecture, significantly improving the performance of other state-of-the-art works. Moreover, a new clinical database, ACRIMA, has been made publicly available, containing 705 labelled images. It is composed of 396 glaucomatous images and 309 normal images, which means, the largest public database for glaucoma diagnosis. The high specificity and sensitivity obtained from the proposed approach are supported by an extensive validation using not only the cross-validation strategy but also the cross-testing validation on, to the best of the authors' knowledge, all publicly available glaucoma-labelled databases.

CONCLUSIONS

These results suggest that using ImageNet-trained models is a robust alternative for automatic glaucoma screening system. All images, CNN weights and software used to fine-tune and test the five CNNs are publicly available, which could be used as a testbed for further comparisons.

摘要

背景

目前大多数使用眼底图像进行自动青光眼评估的算法都依赖于基于分割的手工制作特征,这些特征受到所选择的分割方法和提取特征的性能的影响。卷积神经网络(CNN)等其他特征,由于其能够从原始像素强度中学习高度有区别的特征而广为人知。

方法

在本文中,我们使用了五个不同的基于 ImageNet 训练的模型(VGG16、VGG19、InceptionV3、ResNet50 和 Xception)来进行自动的眼底图像青光眼评估。使用交叉验证和交叉测试策略进行了广泛的验证,结果与文献中的以前的工作进行了比较。

结果

使用五个公共数据库(1707 张图像),在使用 Xception 架构后,获得了平均 AUC 为 0.9605,95%置信区间为 95.92-97.07%,平均特异性为 0.8580,平均敏感性为 0.9346,显著提高了其他最先进的工作的性能。此外,还公开提供了一个新的临床数据库 ACRIMA,其中包含 705 张标记图像。它由 396 张青光眼图像和 309 张正常图像组成,这意味着,这是用于青光眼诊断的最大公共数据库。所提出的方法获得的高特异性和敏感性得到了广泛验证的支持,不仅使用了交叉验证策略,还使用了交叉测试验证,据作者所知,这是所有公开的青光眼标记数据库。

结论

这些结果表明,使用基于 ImageNet 训练的模型是自动青光眼筛查系统的一个稳健选择。所有的图像、CNN 权重和用于微调及测试五个 CNN 的软件都可以公开获取,这可以作为进一步比较的测试平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b68f/6425593/0a18be2cd490/12938_2019_649_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验