Suppr超能文献

定义者:一种基于深度学习的准确识别RNA假尿苷位点的计算方法。

Definer: A computational method for accurate identification of RNA pseudouridine sites based on deep learning.

作者信息

Han Bo, Bai Sudan, Liu Yang, Wu Jiezhang, Feng Xin, Xin Ruihao

机构信息

Jilin Chemical Hospital, Jilin, P.R. China.

College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, P.R. China.

出版信息

PLoS One. 2025 Apr 24;20(4):e0320077. doi: 10.1371/journal.pone.0320077. eCollection 2025.

Abstract

Pseudouridine is an important modification site, which is widely present in a variety of non-coding RNAs and is involved in a variety of important biological processes. Studies have shown that pseudouridine is important in many biological functions such as gene expression, RNA structural stability, and various diseases. Therefore, accurate identification of pseudouridine sites can effectively explain the functional mechanism of this modification site. Due to the rapid increase of genomics data, traditional biological experimental methods to identify RNA modification sites can no longer meet the practical needs, and it is necessary to accurately identify pseudouridine sites from high-throughput RNA sequence data by computational methods. In this study, we propose a deep learning-based computational method, Definer, to accurately identify RNA pseudouridine loci in three species, Homo sapiens, Saccharomyces cerevisiae and Mus musculus. The method incorporates two sequence coding schemes, including NCP and One-hot, and then feeds the extracted RNA sequence features into a deep learning model constructed from CNN, GRU and Attention. The benchmark dataset contains data from three species, H. sapiens, S. cerevisiae and M. musculus, and the results using 10-fold cross-validation show that Definer significantly outperforms other existing methods. Meanwhile, the data sets of two species, H. sapiens and S. cerevisiae, were tested independently to further demonstrate the predictive ability of the model. In summary, our method, Definer, can accurately identify pseudouridine modification sites in RNA.

摘要

假尿苷是一个重要的修饰位点,广泛存在于多种非编码RNA中,并参与多种重要的生物学过程。研究表明,假尿苷在基因表达、RNA结构稳定性和各种疾病等许多生物学功能中都很重要。因此,准确识别假尿苷位点能够有效地解释这种修饰位点的功能机制。由于基因组学数据的快速增长,传统的识别RNA修饰位点的生物学实验方法已无法满足实际需求,有必要通过计算方法从高通量RNA序列数据中准确识别假尿苷位点。在本研究中,我们提出了一种基于深度学习的计算方法Definer,用于准确识别智人、酿酒酵母和小家鼠这三个物种中的RNA假尿苷位点。该方法结合了两种序列编码方案,包括NCP和独热编码,然后将提取的RNA序列特征输入由卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制构建的深度学习模型。基准数据集包含来自智人、酿酒酵母和小家鼠这三个物种的数据,使用10折交叉验证的结果表明,Definer显著优于其他现有方法。同时,对智人和酿酒酵母这两个物种的数据集进行独立测试,以进一步证明该模型的预测能力。总之,我们的方法Definer能够准确识别RNA中的假尿苷修饰位点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d32f/12021131/5ecf41a7cb3b/pone.0320077.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验