文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于透析患者心脏瓣膜钙化早期筛查的机器学习模型的开发与外部验证:一项多中心研究

Development and external validation of a machine learning model for cardiac valve calcification early screening in dialysis patients: a multicenter study.

作者信息

Wang Xiaoxu, Li Yinfang, Cao Zixin, Li Yunuo, Cao Jingyuan, Wang Yao, Li Min, Zheng Jing, Peng Siqi, Shi Wen, Wu Qianqian, Yang Junlan, Fang Yaping, Zhang Aiqing, Zhang Xiaoliang, Wang Bin

机构信息

Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, P.R. China.

Department of Pediatric, The Second Affiliated Hospital of Nanjing Medical University, School of Pediatric, Nanjing Medical University, Nanjing, P.R. China.

出版信息

Ren Fail. 2025 Dec;47(1):2491656. doi: 10.1080/0886022X.2025.2491656. Epub 2025 Apr 24.


DOI:10.1080/0886022X.2025.2491656
PMID:40275572
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12035951/
Abstract

BACKGROUND: Cardiac valve calcification (CVC) is common in dialysis patients and associated with increased cardiovascular risk. However, early screening has been limited by cost concerns. This study aimed to develop and validate a machine learning model to enhance early detection of CVC. METHODS: Data were collected at four centers between 2020 and 2023, including 852 dialysis patients in the development dataset and 661 in the external validation dataset. Predictive factors were selected using LASSO regression combined with univariate and multivariate analyses. Machine learning models including CatBoost, XGBoost, decision tree, support vector machine, random forest, and logistic regression were used to develop the CVC risk model. Model performance was evaluated in both validation sets. Risk thresholds were defined using the Youden index and validated in the external dataset. RESULTS: In the development dataset, 32.9% of patients were diagnosed with CVC. Age, dialysis duration, alkaline phosphatase, apolipoprotein A1, and intact parathyroid hormone were selected to construct the CVC risk prediction model. CatBoost exhibited the best performance in the training dataset. The logistic regression model demonstrated the best predictive performance in both internal and external validation sets, with AUROCs of 0.806 (95% CI 0.750-0.863) and 0.757 (95% CI 0.720-0.793), respectively. Calibration curves and decision curves confirmed its predictive accuracy and clinical applicability. The logistic regression model was selected as the optimal model and achieved excellent risk stratification in CVC risk prediction. CONCLUSION: The predictive model effectively identifies CVC risk in dialysis patients and offers a robust tool for early detection and improved management.

摘要

背景:心脏瓣膜钙化(CVC)在透析患者中很常见,并且与心血管风险增加相关。然而,早期筛查一直受到成本问题的限制。本研究旨在开发并验证一种机器学习模型,以加强对CVC的早期检测。 方法:在2020年至2023年期间于四个中心收集数据,包括开发数据集中的852名透析患者和外部验证数据集中的661名患者。使用LASSO回归结合单变量和多变量分析来选择预测因素。使用包括CatBoost、XGBoost、决策树、支持向量机、随机森林和逻辑回归在内的机器学习模型来开发CVC风险模型。在两个验证集中评估模型性能。使用约登指数定义风险阈值,并在外部数据集中进行验证。 结果:在开发数据集中,32.9%的患者被诊断为CVC。选择年龄、透析时长、碱性磷酸酶、载脂蛋白A1和完整甲状旁腺激素来构建CVC风险预测模型。CatBoost在训练数据集中表现最佳。逻辑回归模型在内部和外部验证集中均表现出最佳预测性能,其曲线下面积(AUROC)分别为0.806(95%置信区间0.750-0.863)和0.757(95%置信区间0.720-0.793)。校准曲线和决策曲线证实了其预测准确性和临床适用性。逻辑回归模型被选为最佳模型,并在CVC风险预测中实现了出色的风险分层。 结论:该预测模型可有效识别透析患者的CVC风险,并为早期检测和改善管理提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/cc42f53b849f/IRNF_A_2491656_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/05002243b3bd/IRNF_A_2491656_UF0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/503cdd8c74c8/IRNF_A_2491656_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/35e3f88226f8/IRNF_A_2491656_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/33919b4b8d0f/IRNF_A_2491656_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/0152e2b08c1f/IRNF_A_2491656_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/f8cd49fd5232/IRNF_A_2491656_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/ff01d68136ee/IRNF_A_2491656_F0006_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/d0c2ea9b7f21/IRNF_A_2491656_F0007_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/cc42f53b849f/IRNF_A_2491656_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/05002243b3bd/IRNF_A_2491656_UF0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/503cdd8c74c8/IRNF_A_2491656_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/35e3f88226f8/IRNF_A_2491656_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/33919b4b8d0f/IRNF_A_2491656_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/0152e2b08c1f/IRNF_A_2491656_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/f8cd49fd5232/IRNF_A_2491656_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/ff01d68136ee/IRNF_A_2491656_F0006_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/d0c2ea9b7f21/IRNF_A_2491656_F0007_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/12035951/cc42f53b849f/IRNF_A_2491656_F0008_C.jpg

相似文献

[1]
Development and external validation of a machine learning model for cardiac valve calcification early screening in dialysis patients: a multicenter study.

Ren Fail. 2025-12

[2]
Malnutrition as a risk factor for cardiac valve calcification in patients under maintenance dialysis: a cross-sectional study.

Int Urol Nephrol. 2020-11

[3]
Prognosis and risk factors for cardiac valve calcification in Chinese end-stage kidney disease patients on combination therapy with hemodialysis and hemodiafiltration.

Ren Fail. 2022-12

[4]
The risk factors and predictive model for cardiac valve calcification in patients on maintenance peritoneal dialysis: a single-center retrospective study.

Ren Fail. 2023

[5]
Serum Alkaline Phosphatase Level Predicts Cardiac Valve Calcification in Maintenance Hemodialysis Patients.

Blood Purif. 2020

[6]
Multimodal Visualization and Explainable Machine Learning-Driven Markers Enable Early Identification and Prognosis Prediction for Symptomatic Aortic Stenosis and Heart Failure With Preserved Ejection Fraction After Transcatheter Aortic Valve Replacement: Multicenter Cohort Study.

J Med Internet Res. 2025-5-1

[7]
Cardiac valve calcification and risk of cardiovascular or all-cause mortality in dialysis patients: a meta-analysis.

BMC Cardiovasc Disord. 2018-1-25

[8]
De novo Cardiac Valve Calcification after Hemodialysis in End-Stage Renal Disease Patients Predicts Future Cardiovascular Events: A Longitudinal Cohort Study.

Cardiorenal Med. 2019-4-17

[9]
Development of a 5-Year Risk Prediction Model for Transition From Prediabetes to Diabetes Using Machine Learning: Retrospective Cohort Study.

J Med Internet Res. 2025-5-9

[10]
Is residual renal function and better phosphate control in peritoneal dialysis an answer for the lower prevalence of valve calcification compared to hemodialysis patients?

Int Urol Nephrol. 2013-4-17

本文引用的文献

[1]
Associations of HDL-C and ApoA-I with Mortality Risk in PCI Patients Across Different hsCRP Levels.

J Inflamm Res. 2024-7-4

[2]
Nomogram for predicting intolerable postoperative early enteral nutrition following definitive surgery for small intestinal fistula: a cohort study.

Int J Surg. 2024-9-1

[3]
Association of apolipoprotein levels with all-cause and cardiovascular mortality.

Eur J Prev Cardiol. 2024-7-23

[4]
The association of peritoneal dialysis and hemodialysis on mitral and aortic valve calcification associated mortality: a meta-analysis.

Sci Rep. 2024-2-27

[5]
Advancing polytrauma care: developing and validating machine learning models for early mortality prediction.

J Transl Med. 2023-9-25

[6]
Cardiac valve calcification in patients on maintenance dialysis. The role of malnutrition-inflammation syndrome, adiposity andcomponents of sarcopenia. A cross-sectional study.

Clin Nutr ESPEN. 2022-12

[7]
Development and validation of a carotid atherosclerosis risk prediction model based on a Chinese population.

Front Cardiovasc Med. 2022-8-2

[8]
Low-Density Lipoprotein Cholesterol and Mortality in Peritoneal Dialysis.

Front Nutr. 2022-7-21

[9]
Low apolipoprotein A1 was associated with increased risk of cancer mortality in patients following percutaneous coronary intervention: A 10-year follow-up study.

Int J Cancer. 2022-11-1

[10]
Endothelial cell-derived tetrahydrobiopterin prevents aortic valve calcification.

Eur Heart J. 2022-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索