Suppr超能文献

序数睡眠深度:一种基于数据驱动的睡眠深度连续测量方法。

Ordinal Sleep Depth: A Data-Driven Continuous Measurement of Sleep Depth.

作者信息

Meulenbrugge Erik-Jan, Sun Haoqi, Ganglberger Wolfgang, Nasiri Samaneh, Thomas Robert J, Westover M Brandon

机构信息

Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.

Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Sleep Res. 2025 Apr 25:e70074. doi: 10.1111/jsr.70074.

Abstract

Conventional sleep staging categorises sleep into discrete stages, which may not capture the continuous nature of sleep depth. We aimed to develop a data-driven continuous measure of sleep depth-ordinal sleep depth (OSD)-using a deep learning framework, and to evaluate its correlation with arousal probability and its association with age, sex, sleep-disordered breathing (SDB) and cognitive impairment. We used 21,787 polysomnography recordings from 18,116 unique patients. A convolutional neural network was trained on 3-s EEG segments to estimate sleep depth continuously, incorporating ordinal regression for the ordered nature of non-REM stages. OSD was compared with the odds ratio product (ORP). Correlations with sleep stages, Arousal Index and clinical variables were assessed. OSD showed a strong linear correlation with arousal probability (Pearson's r = 0.994), slightly outperforming ORP (r = 0.923). Both OSD and ORP reflected expected decreases in sleep depth with advancing age and demonstrated that females have significantly deeper sleep than males across several stages. OSD more accurately captured sleep depth reductions associated with SDB and increasing levels of cognitive impairment, showing significant reductions across all non-REM stages in patients with an increased level of cognitive impairment. OSD as a data-driven measure of sleep depth correlates strongly with arousal probability and effectively captures variations associated with age, sex, SDB and cognitive impairment. The results validate depth as an important dimension of sleep. OSD and ORP provide a nuanced understanding of sleep architecture with physiological and pathological implications.

摘要

传统的睡眠分期将睡眠分为不同阶段,这可能无法捕捉睡眠深度的连续性。我们旨在使用深度学习框架开发一种数据驱动的睡眠深度连续测量方法——序数睡眠深度(OSD),并评估其与觉醒概率的相关性以及与年龄、性别、睡眠呼吸障碍(SDB)和认知障碍的关联。我们使用了来自18116名独特患者的21787份多导睡眠图记录。一个卷积神经网络在3秒的脑电图片段上进行训练,以连续估计睡眠深度,对非快速眼动阶段的有序性质采用序数回归。将OSD与优势比乘积(ORP)进行比较。评估了与睡眠阶段、觉醒指数和临床变量的相关性。OSD与觉醒概率呈强线性相关(皮尔逊r = 0.994),略优于ORP(r = 0.923)。OSD和ORP都反映了随着年龄增长睡眠深度的预期下降,并表明在几个阶段中女性的睡眠明显比男性深。OSD更准确地捕捉了与SDB和认知障碍水平增加相关联的睡眠深度降低,显示认知障碍水平增加的患者在所有非快速眼动阶段都有显著降低。OSD作为一种数据驱动的睡眠深度测量方法,与觉醒概率密切相关,并有效地捕捉了与年龄、性别、SDB和认知障碍相关的变化。结果验证了深度是睡眠的一个重要维度。OSD和ORP提供了对睡眠结构的细致理解,具有生理和病理意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验